

Advanced Computing Guides

Detailed information for FAQ topics is available here and on our IDSC ACS Policies

How do I reset my IDSC password?

Via the IDSC Password Reset page : https://idsc.miami.edu/ccs-account

More Quick Links : https://idsc.miami.edu/quick-links/

How do I get IDSC cluster resources?

Resources on Triton and Pegasus are allocated by project. Contact your PI for access to their project’s resources, or request a New Project here : https://idsc.miami.edu/project_request

How do I use IDSC cluster resources?

To run your work on IDSC clusters, you must submit jobs to the cluster’s resource manager with your project ID. See the menus for more information about each cluster’s job scheduler.

How do I connect to IDSC resources from off-site?

To access IDSC resources while offsite, open a VPN connection
first.

Note

IDSC does not administer UM VPN accounts. Support is handled by UMIT for any and all VPN issues:

UMIT VPN Support Contact Information

Call: (305) 284-6565

Email: help@miami.edu

URL: http://miami.edu/vpn

	Triton Cluster
	Triton Environment

	Triton Software Suites

	Triton LSF Job Scheduling

	Pegasus Cluster
	Pegasus Environment

	Pegasus Job Scheduling

	Pegasus Software

	Pegasus FAQ

	Linux on Clusters
	Introduction to Linux on Pegasus

	Linux FAQs

	ACS Services
	Access (SSH, x11, VPN)

	Storage

	File Transfers

	IDSC Onboarding Training Videos

	IDSC ACS Policies
	Policies

	Terms and Conditions

Triton user guides

	Triton Environment
	Triton Introduction

	Connecting to Triton

	Software Environment Modules
	Module Commands

	Triton Standard Environment

	Triton available modules

	Triton module hierarchies
	More hierarchies and dependencies

	Triton Quickstart Guide
	Before you get started:

	Basic Concepts
	home directory vs. scratch directory (scratch space)

	login node vs. compute node

	Basic Steps
	1. Preparing the code you would like to run

	2. Preparing the input data

	3. Installing dependent libraries on Triton

	4. Preparing the job script

	5. Submitting and monitoring the job

	6. Checking the job output

	7. Chao

	Triton Software Suites
	Anaconda
	Introduction

	Conda General Commands

	Conda Environment
	Using Conda environment on the command line

	Using Conda environment in the LSF job script

	Creating an Conda environment
	For Python

	For R

	Installing Conda packages

	Different Anaconda Installed on Triton
	Anaconda3

	Anaconda2

	Anaconda3 for Deep Learning

	Installing Your Own Anaconda

	IBM WML CE (Deep Learning)
	Introduction

	Using Anaconda

	Installing WML CE packages

	Using WML CE packages
	Small testing using the command line interface

	Submitting jobs using LSF on Triton

	Installing other packages not included in WML CE

	Using DDL (Testing)

	Using LMS (Testing)

	System Pre-installed WML CE packages

	Conda General Commands

	References and Additional Resources

	JupyterHub
	Introduction

	Using JupyterHub on Triton
	Login

	Starting your Jupyter Notebook server

	Logout

	Using Jupyter Notebook
	Creating Your Python Kernel

	Creating Your R kernel

	Removing Personal Kernels

	Using Pre-installed Kernels

	Switching to JupyterLab

	Installing R via Anaconda
	Anaconda Installation

	Configuring Anaconda environment

	Common R package dependencies

	Activating conda environment upon login

	Running jobs

	Triton LSF Job Scheduling
	Job Scheduler – LSF
	LSF Batch Jobs

	Job Queues

	LSF Commands
	Scheduling Jobs

	Monitoring Jobs
	bjobs

	bhist

	bkill

	bqueues

	bhosts

	bpeek

	Examining Job Output

	LSF Job Scripts
	Example script for a serial Job

	Example scripts for parallel jobs

	Interactive Jobs
	Interactive Job Utilizing X11 client

Triton Environment

	Triton Introduction

	Connecting to Triton

	Software Environment Modules
	Module Commands

	Triton Standard Environment

	Triton available modules

	Triton module hierarchies
	More hierarchies and dependencies

	Triton Quickstart Guide
	Before you get started:

	Basic Concepts
	home directory vs. scratch directory (scratch space)

	login node vs. compute node

	Basic Steps
	1. Preparing the code you would like to run

	2. Preparing the input data

	3. Installing dependent libraries on Triton

	4. Preparing the job script

	5. Submitting and monitoring the job

	6. Checking the job output

	7. Chao

Triton Environment Introduction

The Triton cluster consists of 96 IBM POWER System AC922 [https://www.ibm.com/us-en/marketplace/power-systems-ac922]
compute nodes, each of which is equipped with two
NVIDIA Tesla V100 GPUs and engineered to be “the most powerful
training platform”. Triton utilizes the Power9 architecture which specializes in data intensive
workloads.

The Triton cluster is the University of Miami’s newest supercomputer cluster.

Tip

Before running commands, submitting jobs, or using software on the Triton supercomputer, understand our core Policies.

Details: Triton Supercomputer
Credentials: University of Miami Account
Access & Allocations: Policies
Operating System: CentOS 7.6
Default Shell: Bash
Data Transfer: SCP and SFTP

Connecting to Triton

Please note that before connecting to Triton, you must be a member of a project with a Triton resource allocation.

DNS : triton.ccs.miami.edu

Access : SSH over secure UM networks, x11

Credentials : CaneID, University of Miami account

Triton Software Modules

Triton software versions (and dependencies) are deployed through Lmod, an upgraded Environment Modules suite.

https://lmod.readthedocs.io/en/latest/010_user.html

Please note, different modules will be shown/hidden depending on the compiler that is loaded. The below examples are performed with
the gcc/8.3.1 compiler loaded.

Module Commands

Shortcut commands are also available :

	Command

	Shortcut

	Description

	module list

	ml

	list currently
loaded modules

	module avail

	ml av

	list available
modules, based
on currently
loaded
hierarchies
(compilers,
libraries, etc.)

	module avail pkgName1

	ml av pkgName1

	search available
modules, based
on currently
loaded
hierarchies

	module is-avail pkgName1

	ml is-avail pkgName1

	check if
module(s) can be
loaded, based on
currently loaded
hierarchies

	module spider

	ml spider

	list all modules

	module spider pkgName1

	ml spider pkgName1

	search all
modules

	module keyword word1

	ml keyword word1

	search module
help and whatis
for word(s)

	module spider
pkgName1/Version

	ml spider
pkgName1/Version

	show how to load
a specific
module

	module load pkgName1

	ml pkgName1

	load module(s)
by name (default
version)

	module load
pkgName1/Version

	ml pkgName1/Version

	load module(s)
by name and
version

	module unload pkgName1

	ml -pkgName1

	unload module(s)
by name

	module reset

	ml reset

	reset to system
defaults

	module restore

	ml restore

	reset to user
defaults, if
they exist

	module help pkgName1

	ml help pkgName1

	show module help
info

	module whatis pkgName1

	ml whatis pkgName1

	show module
version info

	module show pkgName1

	ml show pkgName1

	show module
environment
changes

Triton Standard Environment

The StdEnv on Triton contains the default configurations for the cluster.

	show loaded modules with module list or ml

	show StdEnv settings with module show StdEnv or
ml show StdEnv

[username@login1 ~]$ ml

 Currently Loaded Modules:
 1) gcc/8.3.1 2) StdEnv

[username@login1 ~]$ ml show StdEnv
 --
 /share/mfiles/Core/StdEnv.lua:
 --
 help([[Lua Help for the Standard Environment module configurations on Triton
]])
 whatis("Description: loads standard environment modules")
 load("gcc/8.3.1")

Triton available modules

Available modules at login include the compilers under “Compilers”, compiler-independent modules under “Core”, and modules dependent on the currently loaded compiler.

Note : some modulefiles are marked (E) for Experimental. As with all software, please report any issues to hpc@ccs.miami.edu.

	show loaded modules with module list or ml

	show module help info with module help NAME or ml help NAME

	show module whatis info with module whatis NAME or
ml whatis NAME

	show available modules with module avail or ml av

	show module settings with module show NAME or ml show NAME

	load a module with module load NAME or ml NAME

[username@login1 ~]$ ml

 Currently Loaded Modules:
 1) gcc/8.3.1 2) StdEnv

[username@login1 ~]$ ml help gcc

 --------------------- Module Specific Help for "gcc/8.3.1" ---------------------
 The GNU Compiler Collection includes front ends for C, C++, Objective-C,
 Fortran, Ada, and Go, as well as libraries for these languages.

[username@login1 ~]$ ml whatis gcc
 gcc/8.3.1 : Name : gcc
 gcc/8.3.1 : Version : 8.3.1
 gcc/8.3.1 : Target : power9le

[username@login1 ~]$ ml av
 ----------------------- /share/mfiles/Compiler/gcc/8.3.1 -----------------------
 R/3.6.3 libxsmm/1.16.1 (E)
 R/4.0.3 ncview/2.1.8 (D)
 R/4.0.5 (D) netcdf-c/4.8.0
 R/4.1.0 netcdf-fortran/4.5.3
 cmake/3.19.2 openbabel/3.0.0
 cmake/3.20.2 (D) openblas/0.3.13
 ffmpeg/4.3.2 openblas/0.3.14 (D)
 fftw/3.3.9 openfoam/2012 (D)
 gdal/2.4.4 openmpi/4.0.5
 gdal/3.3.0 (D) openssl/1.1.1k
 gromacs/2021.1 pandoc/2.7.3
 gsl/2.6 parallel-netcdf/1.12.2
 hdf5/1.10.7 perl/5.32.1
 jags/4.3.0 plumed/2.8.0
 lammps/20200721 python/3.8.10
 lammps/20210310 (D) smpi/10.02
 libgit2/1.1.0 wrf/4.2
 libicov/1.16

 ------------------------ /usr/share/Modules/modulefiles ------------------------
 dot module-info modules null use.own

 ------------------------------ /share/mfiles/Core ------------------------------
 StdEnv (L) libiconv/1.16
 anaconda2/2019.07 (E) libpciaccess/0.13.5
 anaconda3/biohpc (E) libxml2/2.9.9
 anaconda3/2019.07 (E) ncl/6.3.0
 anaconda3/2019.10 (E,D) ncview/2.1.2
 anaconda3/2020.11 (E) netlib-scalapack/2.0.2
 anaconda3/2023.03 (E) numactl/2.0.12
 cellranger-atac/3.0.2 (E) openblas/0.3.7
 cellranger-dna/3.0.2 (E) openfoam/2006
 cellranger/3.0.2 (E) vmd/1.9.4 (E)
 cmake/3.20.2 wml/1.6.1 (E)
 cuda/10.1 wml/1.6.2 (E)
 cuda/10.2 (D) wml/1.7.0 (E,D)
 gaussian/16 wml_anaconda3/2019.10 (E)
 java/8.0 (D) xz/5.2.4
 java/8.0-6.5 zlib/1.2.11
 lammps/2019.08

 --------------------------- /share/mfiles/Compilers ----------------------------
 at/12.0 gcc/7.4.0 gcc/8.4.0
 gcc/4.8.5 (D) gcc/8.3.1 (L) xl/16.1.1.4 (E)

 Where:
 D: Default Module
 E: Experimental
 L: Module is loaded

 Use "module spider" to find all possible modules.
 Use "module keyword key1 key2 ..." to search for all possible modules matching
 any of the "keys".

..

[username@login1 ~]$ ml show gcc
 --
 /share/mfiles/Compilers/gcc/8.3.1.lua:
 --
 whatis("Name : gcc")
 whatis("Version : 8.3.1")
 whatis("Target : power9le")
 help([[The GNU Compiler Collection includes front ends for C, C++, Objective-C,
 Fortran, Ada, and Go, as well as libraries for these languages.]])
 prepend_path("MODULEPATH","/share/mfiles/Compiler/gcc/8.3.1")
 family("compiler")
 prepend_path("INFOPATH","/opt/rh/devtoolset-8/root/usr/share/info")
 prepend_path("LD_LIBRARY_PATH","/opt/rh/devtoolset-8/root/usr/lib64:/opt/rh/devtoolset-8/root/usr/lib:/opt/rh/devtoolset- 8/root/usr/lib64/dyninst:/opt/rh/devtoolset-8/root/usr/lib/dyninst:/opt/rh/devtoolset-8/root/usr/lib64:/opt/rh/devtoolset-8/root/usr/lib")
 prepend_path("MANPATH","/opt/rh/devtoolset-8/root/usr/share/man")
 prepend_path("PATH","/opt/rh/devtoolset-8/root/usr/bin")
 prepend_path("PKG_CONFIG_PATH","/opt/rh/devtoolset-8/root/usr/lib64/pkgconfig")
 prepend_path("PYTHONPATH","/opt/rh/devtoolset-8/root/usr/lib64/python2.7/site-packages:/opt/rh/devtoolset-8/root/usr/lib/python2.7/site-packages")
 setenv("PCP_DIR","/opt/rh/devtoolset-8/root")
 setenv("PERL5LIB","/opt/rh/devtoolset-8/root//usr/lib64/perl5/vendor_perl:/opt/rh/devtoolset-8/root/usr/lib/perl5:/opt/rh/devtoolset-8/root//usr/share/perl5/vendor_perl")

[username@login1 ~]$ ml smpi
[username@login1 ~]$ ml

 Currently Loaded Modules:
 1) gcc/8.3.1 2) StdEnv 3) smpi/10.02

Triton module hierarchies

Switch to a different compiler with the module swap command. Any dependent modules should also swap, if both versions exist. The SMPI module has both a gcc version, and an at/12.0 version.

	show currently loaded modules with ml

	show smpi module help with ml help smpi

	switch from gcc to at with ml swap gcc at or ml -gcc at

	note the Lmod “reload” message for the smpi module

	(confirm smpi is loaded with ml)

	show smpi module help with ml help smpi (a different smpi module)

	reset to Triton defaults with ml reset

[username@login1 ~]$ ml

Currently Loaded Modules:
 1) StdEnv 2) gcc/8.3.1 3) smpi/10.02

 [username@login1 ~]$ ml help smpi

 -------------------- Module Specific Help for "smpi/10.02" ---------------------
 Lua Help file for IBM smpi 10.02 with devtoolset-8 GCC suite

 gcc version 8.3.1

 sets OMPI_CC, OMPI_FC, and OMPI_CXX to AT gcc suite

[username@login1 ~]$ ml -gcc at

Due to MODULEPATH changes, the following have been reloaded:
 1) smpi/10.02

[username@login1 ~]$ ml

Currently Loaded Modules:
 1) at/12.0 2) StdEnv 3) smpi/10.02

[username@login1 ~]$ ml help smpi

 -------------------- Module Specific Help for "smpi/10.02" ---------------------
 Lua Help file for IBM smpi 10.02 with Triton IBM AT 12.0 gcc suite

 gcc version 8.3.1

 sets OMPI_CC, OMPI_FC, and OMPI_CXX to AT gcc suite

[username@login1 ~]$ ml reset
Resetting modules to system default. Resetting $MODULEPATH back to system default. All extra directories will be removed from $MODULEPATH.
[username@login1 ~]$ ml

 Currently Loaded Modules:
 1) gcc/8.3.1 2) StdEnv

More hierarchies and dependencies

Dependency modules can be loaded in the same command, without waiting for them to appear in the output for module list (ml av).

Example: cdo, nco, and netcdff depend on “netcdfc”. Netcdfc depends on “hdf5”. They can be loaded in sequence, starting with the first dependency, “hdf5”.

[username@login1 ~]$ ml gcc/4.8.5 hdf5 netcdfc netcdff cdo nco
 The following have been reloaded with a version change:
 1) gcc/8.3.1 => gcc/4.8.5

[username@login1 ~]$ ml

 Currently Loaded Modules:
 1) gcc/4.8.5 4) netcdfc/4.7.4 (E) 7) cdo/1.9.8 (E)
 2) StdEnv 5) netcdff/4.5.3 (E)
 3) hdf5/1.8.16 (E) 6) nco/4.9.3 (E)

To view dependent modules in ml av, first load their prerequisites.

“Behind the scenes”

After an hdf5 module is loaded, any available netcdfc modules will show in ml av output :

	load the default hdf5 module with ml hdf5

	show loaded modules with ml

	show available modules with ml av : netcdfc module now available to load

	load the default netcdfc module with ml netcdfc

	show newly available modules with ml av : netcdff, nco, and cdo now available to load

[username@login1 ~]$ ml hdf5
[username@login1 ~]$ ml

 Currently Loaded Modules:
 1) gcc/4.8.5 2) StdEnv 3) hdf5/1.8.16 (E)

[username@login1 ~]$ ml av

 ------------------- /share/mfiles/Library/gcc485/hdf5/1.8.16 -------------------
 netcdfc/4.7.4 (E)

 ----------------------- /share/mfiles/Compiler/gcc/4.8.5 -----------------------
 hdf5/1.8.16 (E,L) myGCCdependentProgram/1.0 (S) openmpi/3.1.4
 hwloc/1.11.11 openBLAS/0.3.7 smpi/10.02

 ...

..

Once both hdf5 and netcdfc are loaded, ml av shows the next set of dependent modules :

[username@login1 ~]$ ml netcdfc
[username@login1 ~]$ ml

 Currently Loaded Modules:
 1) gcc/4.8.5 2) StdEnv 3) hdf5/1.8.16 (E) 4) netcdfc/4.7.4 (E)

[username@login1 ~]$ ml av

 ------------ /share/mfiles/Library/gcc485/netcdfc/4.7.4/hdf5/1.8.16 ------------
 cdo/1.9.8 (E) nco/4.9.3 (E) netcdff/4.5.3 (E)

 ------------------- /share/mfiles/Library/gcc485/hdf5/1.8.16 -------------------
 netcdfc/4.7.4 (E,L)

 ----------------------- /share/mfiles/Compiler/gcc/4.8.5 -----------------------
 hdf5/1.8.16 (E,L) myGCCdependentProgram/1.0 (S) openmpi/3.1.4
 hwloc/1.11.11 openBLAS/0.3.7 smpi/10.02

 ...

..

Triton QuickStart Guide

Before you get started:

	Make sure you understand our core
Policies [https://acs-docs.readthedocs.io/policies/policies.html].

	You need to be a member of a Triton
project [https://redcap.miami.edu/surveys/?s=F8MK9NMW9N] which has
one of triton_faculty, triton_student or triton_education
resource type.

	Make sure you connect to the UM network (on campus or via
VPN [https://www.it.miami.edu/a-z-listing/virtual-private-network/index.html]).

Basic Concepts

home directory vs. scratch directory (scratch space)

Each user will have a home directory on Triton located at
/home/<caneid> as the working directory for submitting and running
jobs. It is also for installing user software and libraries that are not
provided as system utilities. Home directory contains an allocation of 250GB per user.

Each project group will have a scratch directory located at
/scratch/<project_name> for holding the input and output data. You
can have some small and intermediate data in your home directory, but
there are benefits to put data in the scratch directory: 1. everyone in
the group can share the data; 2. the scratch directory is larger
(usually 2T, and you can require more); 3. the scratch directory will be
faster. Although currently (2020.10) /home and /scratch have the same
hardware (storage and i/o), /scratch has priority with hardware
upgrades.

login node vs. compute node

You can think of the login node as the “user interface” to the whole
Triton system. When you connect to Triton and run commands on the
command line, you are actually doing things on the login node.

When you submit jobs using bsub, Triton’s job
scheduler [https://acs-docs.readthedocs.io/triton/3-jobs/1-lsf.html]
will look for the compute nodes that satisfy your resource request and
assign your code to the nodes to run. You do not have direct access to
the compute nodes yourself.

Basic Steps

Here are the basic steps to run a simple Python script on Triton. In
this example, the user has CaneID abc123 and is a member of Triton
project xyz. You need to replace these with your own CaneID and
Triton project name.

1. Preparing the code you would like to run

Editing the code

You can edit the code written in any programming language on your local
computer. The example.py here is written in Python.

import matplotlib.pyplot as plt
import time

start = time.time()

X, Y = [], []

read the input data from the scratch directory
remember to replace xyz with your project name
for line in open('/scratch/xyz/data.txt', 'r'):
 values = [float(s) for s in line.split()]
 X.append(values[0])
 Y.append(values[1])

plt.plot(X, Y)

save the output data to the scratch directory
remember to replace xyz with your project name
plt.savefig('/scratch/xyz/data_plot.png')

give you some time to monitor the submitted job
time.sleep(120)

elapsed = (time.time() - start)

print(f"The program lasts for {elapsed} seconds.")

Transfering the code to your Triton home directory

After editing the code, you need to transfer it from the local computer
to your Triton home directory. You can do it with a file transfer tool
such as FileZilla GUI application and scp command-line utility.

If using FileZilla, you need to put sftp://triton.ccs.miami.edu
in the Host field, fill in the Username and Password fields
with your CaneID and the associated password, and leave the Port
field blank. By clicking the check mark icon in the menu bar, you will
connect to Triton and the Remote site on the right will be your
Triton home directory by default. Then, you can change the
Local site on the left to the directory holding example.py and
transfer the file by dragging it from left to right.

If using scp, you need to type, assuming origin is the absolute
path that specifies the directory on your local computer holding
example.py, scp origin/example.py
abc123@triton.ccs.miami.edu:/home/abc123, not forgetting to put
your CaneID in place of abc123, and then following the prompt for
the associated password.

After that, the file will be located at /home/abc123/example.py on
Triton for user abc123.

2. Preparing the input data

Getting the input data

In this example, you prepare the data.txt file as your input data on
the local computer.

0 0
1 1
2 4
4 16
5 25
6 36

Transferring the input data to your project scratch directory on Triton

You can use FileZilla or scp to transfer the input data to
/scratch/xyz/data.txt on Triton. You need to replace xyz with your
project name.

3. Installing dependent libraries on Triton

Logging in to Triton

You can use Terminal on a Mac or PuTTY on a Windows
machine to log in to Triton via SSH Protocol.

If using Terminal on Mac, you can run the command
ssh abc123@triton.ccs.miami.edu (remember to replace abc123 with
your CaneID) and follow the instruction to type your password.

If using PuTTY, you need to put triton.ccs.miami.edu in the
Host Name field, leave 22 in the Port field, and select
SSH as the Connection type, then press Open. After that, you
can follow the instruction to type your password.

At this point, you should be able to see the Triton welcome message and
[abc123@login ~]$ which indicates you have logged in to the Triton
login node and at the home directory ~.

If you are new to Linux, you can check our Linux
Guides [https://acs-docs.readthedocs.io/linux/README.html].

Installing software/libraries needed for the code

In the example, you will need the Python interpreter and Python packages
to run the code. Also, for Python it is better to set up different
environments for different projects to avoid conflictions of packages.

On Triton, you can use the system-installed
Anaconda [https://acs-docs.readthedocs.io/triton/2-sw/anaconda.html]
to do the Python environment set up:

[abc123@login ~]$ ml anaconda3
[abc123@login ~]$ conda create -n example_env python=3.8 matplotlib

4. Preparing the job script

Editing the job script

The job
script [https://acs-docs.readthedocs.io/triton/3-jobs/4-scripts.html]
is important. It tells the job scheduler how much resources your job
needs, where to find the dependent software or libraries, and how the
job should be run.

You can edit the example_script.job file to make example.py run
on a Triton compute node.

#!/bin/bash
#BSUB -J example_job
#BSUB -o example_job%J.out
#BSUB -P xyz
#BSUB -n 1
#BSUB -R "rusage[mem=128M]"
#BSUB -q normal
#BSUB -W 00:10

ml anaconda3
conda activate example_env
cd ~
python example.py

	#BSUB -J example_job specifies the name of the job.

	#BSUB -o ~/example_job%J.out The line gives the path and name for
the standard output file. It contains the job report and any text you
print out to the standard output. %J in the name of the file will
be replaced by the unique job id.

	#BSUB -P xyz specifies the project (remember to replace xyz with
your project name).

	#BSUB -q normal specifies which queue you are submitting the job
to. Most of the “normal” jobs running on Triton will submit to the
normal queue.

	#BSUB -n 1 requests 1 CPU core to run the job. Since the example
job is simple, 1 CPU core will be enough. You can request up to 40
cores from one computing node on Triton for non-distributed jobs.

	#BSUB -R "rusage[mem=128M]" requests 128 megabytes memory to run
the job. Since the example job is simple, 128 megabytes memory will
be enough. You can request up to ~250 gigabytes memory from one
computing node on Triton.

	#BSUB -W 00:10 requests 10 minutes to run the job. If you do not
put this line, the default time limit is 1 day and the maximum time
you can request is 7 days.

	ml anaconda3 loads the Anaconda module on Triton.

	conda activate example_env activates the Conda environment you
created which contains the dependent Python package for the job.

	cd ~ goes to the home directory where example.py is located.

	python example.py runs example.py

Transferring the job script to your Triton home directory

You can use FileZilla or scp to transfer the job script to
/home/abc123/example.job on Triton. You need to replace abc123 with
your CaneID.

5. Submitting and monitoring the job

Job submission

[abc123@login ~]$ bsub < example_script.job

Job monitoring

While the job is submitted, you can use bjobs to check the status.

[abc123@login ~]$ bjobs

When the job is running you will see:

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
594966 abc123 RUN normal login1 t094 *ample_job Oct 12 11:43

If the job has finished you will see:

No unfinished job found

6. Checking the job output

Standard output file

This is the file you specify with #BSUB -o in your job script. In
this example, after the job is finished, the standard output file
example_job594966.out will be placed in the directory you submit the
job, you can locate it to a different directory by giving the path.
594966 is the job id which is unique for each submitted job.

At the end of this file, you can see the report which gives the CPU
time, memory usage, run time, etc., for the job. It could guide you to
estimate the resources to request for the future jobs. Also, you can see
the text you ask to print (to the stardard output) in
example.py.

--

Successfully completed.

Resource usage summary:

 CPU time : 8.89 sec.
 Max Memory : 51 MB
 Average Memory : 48.50 MB
 Total Requested Memory : 128.00 MB
 Delta Memory : 77.00 MB
 Max Swap : -
 Max Processes : 4
 Max Threads : 5
 Run time : 123 sec.
 Turnaround time : 0 sec.

The output (if any) follows:

The program lasts for 120.23024702072144 seconds.

Output data

After the job is done, you will find the output data which is the png
file saved in the scratch space. In this example, it is
/scratch/xyz/data_plot.png.

Transferring output file to local computer

You can view the output plot using any image viewer software on your
local computer. To transfer the output file from Triton to your local
computer, you can use FileZilla to drag the file from right to
left, which transfers it, or you can use scp by typing, in the terminal
on your local computer (assuming your CaneID is abc123, and destination is
the absolute path that specifies the directory on the local computer to
which you intend to move the file),
scp abc123@triton.ccs.miami.edu:/scratch/xyz/data_plot.png destination
and following the prompt to provide a password.

7. Chao

Logging out from Triton on the command-line interface

[abc123@login ~]$ exit

Disconnecting from Triton on ``FileZilla``

On FileZilla, you can click on the x icon in the menu bar to
disconnect from Triton.

Triton Software Suites

	Anaconda
	Introduction

	Conda General Commands

	Conda Environment
	Using Conda environment on the command line

	Using Conda environment in the LSF job script

	Creating an Conda environment
	For Python

	For R

	Installing Conda packages

	Different Anaconda Installed on Triton
	Anaconda3

	Anaconda2

	Anaconda3 for Deep Learning

	Installing Your Own Anaconda

	IBM WML CE (Deep Learning)
	Introduction

	Using Anaconda

	Installing WML CE packages

	Using WML CE packages
	Small testing using the command line interface

	Submitting jobs using LSF on Triton

	Installing other packages not included in WML CE

	Using DDL (Testing)

	Using LMS (Testing)

	System Pre-installed WML CE packages

	Conda General Commands

	References and Additional Resources

	JupyterHub
	Introduction

	Using JupyterHub on Triton
	Login

	Starting your Jupyter Notebook server

	Logout

	Using Jupyter Notebook
	Creating Your Python Kernel

	Creating Your R kernel

	Removing Personal Kernels

	Using Pre-installed Kernels

	Switching to JupyterLab

	Installing R via Anaconda
	Anaconda Installation

	Configuring Anaconda environment

	Common R package dependencies

	Activating conda environment upon login

	Running jobs

Anaconda on Triton

Introduction

Anaconda is an open-source distribution of the Python and R programming
languages for scientific computing. The Anaconda distribution comes with
conda, which is a package manager and environment manager, and over 150
packages automatically installed (other 1,500+ packages could be
downloaded and installed easily from the Anaconda repository). In order to use Anaconda on Triton, you need to have access to the UM network and the Triton system.
Please check IDSC ACS Policies

Conda General Commands

	$ conda create -n <environment name> python=<version> to create
an environment

	$ conda env list to list all available environments

	$ conda activate <environment name> to activate an environment

Inside an environment (after activating the environment):

	$ conda list to list installed packages

	$ conda install <package name> to install a package

	$ conda install <package name>=<version> to install a package
with a specific version

	$ conda install -c <url> <package name> to install a package from
a specific channel (repository)

	$ conda remove <package name> to uninstall a package

	$ conda deactivate to deactivate the environment

Please check the official document [https://docs.conda.io/projects/conda/en/latest/commands.html#conda-general-commands] for details.

Conda Environment

A Conda environment contains a specific collection of application software, frameworks and their dependencies that are maintained and run separately from software in another environment.

Using Conda environment on the command line

	$ ml anaconda3/<version> or ml wml_anaconda3/<version> if you need to install deep learning packages [https://acs-docs.readthedocs.io/triton/2-sw/wmlce.html]

	$ conda activate <your environment or system pre-installed environment>

	Run test program (dependencies have been installed in the environment)

	$ conda deactivate

Note

Only small test program should be run on the command line. Formal jobs need to be submitted via LSF [https://acs-docs.readthedocs.io/triton/3-jobs/1-lsf.html].

Using Conda environment in the LSF job script

An LSF job script example using Conda environment:

#!/bin/bash
#BSUB -J "job_example"
#BSUB -o "job_example_%J.out"
#BSUB -e "job_example_%J.err"
#BSUB -n 4
#BSUB -R "rusage[mem=2G]"
#BSUB -q "normal"
#BSUB -W 00:30
#BSUB -B
#BSUB -N
#BSUB -u <my_email>@miami.edu

ml anaconda3
conda activate <my_environment>
python <path to my_program.py>

In my_program.py, you can import any package that has been installed in your environment.
Details about job scheduling can be found at Triton Job
Scheduling [https://acs-docs.readthedocs.io/triton/3-jobs/README.html].

Creating an Conda environment

For Python

$ conda create -n <environment name> python=<version> <package1> <package2> <...>

For example, conda create -n my_env python=3.7 numpy scipy will
create an environment at ~/.conda/envs with Python 3.7.x and two packages
numpy and scipy. You can also specify the package versions.

Note

You do not need to install all packages at the same time while creating the environment,
but doing so will resolve the dependencies altogether and avoid
further conflicts, so this is the recommended way to create the environment.

For R

$ conda create -n <r environemnt name> -c conda-forge r-base

-c conda-forge guides conda to find the r-base package from
conda-forge channel.

Installing Conda packages

If you want to install more packages after creating the environment, you can run
conda install <package> in the activated environment.

Note

If the package is not found, you can do a search in the Anaconda
Cloud [https://anaconda.org/] and choose Platform linux-ppc64le.
Click on the name of the found package, the detail page will show you
how to install the package with a specific channel.

If the package is still not found, you could try pip install <package>

Warning

Issues may arise when using pip and conda together.
Only after conda has been used to install as many packages
as possible should pip be used to install any remaining software. If
modifications are needed to the environment, it is best to create a new
environment rather than running conda after pip.

Different Anaconda Installed on Triton

Several Anaconda have been installed on Triton. You can use module load (ml as a shortcut)
to load different Anaconda. Loading the module does source <anaconda installed path>/etc/profile.d/conda.sh
behind the scenes.

Anaconda3

Anaconda3 has Python 3.x as its base Python version (although it can download Python 2.x as well).
On Triton, different versions of Anaconda3 located at
/share/apps/anaconda3/ use the default configuration
which will search packages from https://repo.anaconda.com/pkgs/main
and https://repo.anaconda.com/pkgs/r.

In order to use it, run ml anaconda3/<version>.
ml anaconda3 will load the default version which is Anaconda3-2019.10 at the time the document is edited.

Anaconda2

Anaconda2 has Python 2.x as its base Python version.
On Triton, different versions of Anaconda2 located at
/share/apps/anaconda2/ use the default configuration
which will search packages from https://repo.anaconda.com/pkgs/main
and https://repo.anaconda.com/pkgs/r.

In order to use it, run ml anaconda2/<version>.
ml anaconda2 will load the default version which is Anaconda2-2019.07 at the time the document is edited.

Anaconda3 for Deep Learning

Anaconda3 for Deep Learning is configured to first search packages from the deep learning channel
supported by IBM at
https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/,
and then the https://repo.anaconda.com/pkgs/main and https://repo.anaconda.com/pkgs/r channels.

In order to use it, run ml wml_anaconda3/<version>.
ml wml_anaconda3 will load the default version which is Anaconda3-2019.10 at the time the document is edited.

More details can be found at IBM WML on Triton User
Menu [https://acs-docs.readthedocs.io/triton/2-sw/wmlce.html].

Installing Your Own Anaconda

If you would like to manage your own Anaconda, you can install it in
your home directory following the instruction of Installing Anaconda on
Linux
POWER [https://docs.anaconda.com/anaconda/install/linux-power8/].

IBM WML CE on Triton User Menu

Introduction

To release the power of the advanced hardware, IBM provides
Watson Machine Learning Community Edition (WML CE) which is a set of
software packages for deep learning and machine learning development and
applications on the state-of-the-art POWER system equiped with the most
advanced NVIDIA GPUs. WML CE contains the popular open source deep
learning frameworks such as TensorFlow and PyTorch, IBM-optimized Caffe,
IBM’s machine learning library (Snap ML) and software for distributed
training (DDL) and large model support (LMS).

Using Anaconda

The WML CE packages are distributed as conda packages in an online
conda repository [https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/].
You can use Anaconda or Miniconda to install and manage the packages.

On Triton, we have pre-installed Anaconda that is configured to point to the repository containing the WML CE packages.
After logging to the system with ssh <your caneid>@triton.ccs.miami.edu, you can do ml wml_anaconda3 to load the default version of
the WML-configured Anaconda module [https://acs-docs.readthedocs.io/triton/1-env/3-modules.html].

We recommend using the pre-installed Anaconda since it will be easier for us to track down the problem if you need assistance. However, you can also install Anaconda or Miniconda in your home directory following the WML CE system setup guide [https://www.ibm.com/support/knowledgecenter/SS5SF7_1.7.0/navigation/wmlce_setupAnaconda.html], and handle it by yourself.

Installing WML CE packages

	$ ml wml_anaconda3

	$ conda create -n <your environment> python=<version> powerai=<version>

For example, conda create -n my_wml_env python=3.7 powerai=1.7.0 will create
an environment named my_wml_env at ~/.conda/envs with python 3.7 and all the WML CE packages installed.

	$ conda activate <your environment>

Installing all the WML CE packages at the same time in your environment:

	(your environment)$ conda install powerai=1.6.2

Or installing individual package:

	(your environment)$ conda install <WML CE supported package>

Using WML CE packages

Warning

You should only do small testing on the login node using the command line interface, formal jobs need to
be submitted via LSF [https://acs-docs.readthedocs.io/triton/3-jobs/README.html#].

Small testing using the command line interface

	$ ml wml_anaconda3

	$ conda activate <your environment>

	(your environment)$ python testing_program.py

	$ conda deactivate

Submitting jobs using LSF on Triton

Use #BSUB -q normal to submit job to queue normal for testing on
Triton now (it will change in the future).

Add #BSUB -gpu "num=<number of GPUs>" if you need GPUs in your job.
You can use up to 2 GPUs if Distributed Deep Learning (DDL) is not
involved.

A job script example:

#!/bin/bash
#BSUB -J "my_example"
#BSUB -o "my_example_%J.out"
#BSUB -e "my_example_%J.err"
#BSUB -n 4
#BSUB -gpu "num=1"
#BSUB -q "normal"
#BSUB -W 00:10

ml wml_anaconda3
conda activate <your_environment>
python path/to/your_program.py

If the above file is named my_job_script.job, run the below command to submit the job:

$ bsub < my_job_script.job

The output will show in the my_example_<job id>.out file after the job is done.

Installing other packages not included in WML CE

Warning

Installing other packages could cause conflicts with the installed WML CE packages.

If you really need to install other packages, you can try the steps below in order until you find it.

	conda install <package> or conda install <package>=<version> in the activated environment will
search the package in the IBM WML CE repo [https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/],
then the official repo hosted by Anaconda [https://repo.anaconda.com/pkgs/main/linux-ppc64le/] as configured
in the wml_anaconda3. The package will be installed if it is found in the repos.

	Search in Anaconda Cloud [https://anaconda.org/] and choose
Platform linux-ppc64le, then click on the name of the found package.
The detail page will show you how to install the package with a specific channel, such as
conda install -c <a specific channel> <package>

	Use pip install <package>

Warning

Issues may arise when using pip and conda together.
Only after conda has been used to install as many packages as possible should pip be used to install any remaining software.

Using DDL (Testing)

Getting started with DDL [https://www.ibm.com/support/knowledgecenter/SS5SF7_1.7.0/navigation/wmlce_getstarted_ddl.html].

Warning

ddl-tensorflow operator and pytorch DDL are DEPRECATED and will be REMOVED in the next WML CE release. Please start using horovod [https://www.ibm.com/support/knowledgecenter/SS5SF7_1.7.0/navigation/wmlce_getstarted_horovod.html] with NCCL backend.

A job script example:

#BSUB -L /bin/bash
#BSUB -J "MNIST_DDL"
#BSUB -o "MNIST_DDL.%J"
#BSUB -n 12
#BSUB -R "span[ptile=4]"
#BSUB -gpu "num=2"
#BSUB -q "normal"
#BSUB -W 00:10

module unload gcc
ml wml_anaconda3
ml xl
ml smpi
conda activate <your environment>

Workaround for GPU selection issue
cat > launch.sh << EoF_l
#! /bin/sh
export CUDA_VISIBLE_DEVICES=0,1
exec \$*
EoF_l
chmod +x launch.sh

Run the program
export PAMI_IBV_ADAPTER_AFFINITY=0
ddlrun ./launch.sh python /path/to/your_program.py

Clean up
/bin/rm -f launch.sh

	#BSUB -n 12 requests 12 CPU cores

	#BSUB -R "span[ptile=4]" asks for 4 cores per node, so 3 nodes (12 / 4) will be involved.

	#BSUB -gpu "num=2" requests 2 GPUs per node, and therefore 6 GPUs in total (2 * 3) are requested for this job.

Using LMS (Testing)

Getting started with TensorFlow large model support [https://www.ibm.com/support/knowledgecenter/SS5SF7_1.7.0/navigation/wmlce_getstarted_tflms.html]

LMS section of Getting started with PyTorch [https://www.ibm.com/support/knowledgecenter/SS5SF7_1.7.0/navigation/wmlce_getstarted_pytorch.html]

System Pre-installed WML CE packages

We recommend you set up your own environment and install WML CE packages so you have a total control. However, you can also use the different versions of WML CE that we have installed on the system.

You can do ml wml/<versions> to activate the environment including packages of the specific WML CE version.
ml -wml will deactivate the environment.

Conda General Commands

	$ conda create -n <environment name> python=<version> to create
an environment

	$ conda env list to list all available environments

	$ conda activate <environment name> to activate an environment

Inside an environment (after activating the environment):

	$ conda list to list installed packages

	$ conda install <package name> to install a package

	$ conda install <package name>=<version> to install a package
with a specific version

	$ conda install -c <url> <package name> to install a package from
a specific channel (repository)

	$ conda remove <package name> to uninstall a package

	$ conda deactivate to deactivate the environment

Please check the official document [https://docs.conda.io/projects/conda/en/latest/commands.html#conda-general-commands] for details.

References and Additional Resources

Watson Machine Learning Community
Edition [https://developer.ibm.com/linuxonpower/deep-learning-powerai/releases/]

IBM Watson Machine Learning Community Edition Version 1.7.0
documentation [https://www.ibm.com/support/knowledgecenter/SS5SF7_1.7.0/navigation/welcome.html]

Deep learning and AI on Power Systems technical
resources [https://developer.ibm.com/linuxonpower/deep-learning-powerai/library/]

Warning

Please make sure to save your work frequently in case a shutdown happens.

JupyterHub on Triton User Menu

Introduction

JupyterHub [https://jupyterhub.readthedocs.io/en/stable/index.html]
provides Jupyter Notebook for multiple users.

Through JupyterHub on Triton, you can request and start a Jupyter
Notebook server on one of Triton’s compute nodes (using
LSF job scheduler [https://acs-docs.readthedocs.io/triton/3-jobs/1-lsf.html]
behind the scenes). In this way, you can interactively test
your Python or R programs through the Notebook with the supercomputer
resources.

Currently all requested Notebook servers are running in only two compute
nodes. It is recommended to use the Notebook as a testing tool and submit formal jobs via LSF.

Using JupyterHub on Triton

Login

	First you need to have access to Triton. Please check the IDSC ACS Policies

	Connect with the UM network on campus or via
VPN [https://www.it.miami.edu/a-z-listing/virtual-private-network/index.html].

	Open the Login page https://jupyter.ccs.miami.edu:8000 on your
browser.

	Log in using your UM CaneID and the associated password.

Starting your Jupyter Notebook server

	Press the Start My Notebook Server button to launch the resource
request page.

	Choose the memory, number of CPU cores, time you want to run the
Notebook server and whether or not you want to use a GPU.

	Press the Request button to request and start a Notebook server.

Logout

When using the JupyterHub, you need to be clear that there are three things you need to turn off:

	Close Notebook File - After saving, press File in the menu bar and choose Close and Halt.

	Stop Notebook Server - Click the Control Panel button at the top-right corner and press Stop My Notebook Server.

	Logout from JupyterHub - Click the Logout from JupyterHub button at the top-right corner.

Warning

If you only logout from JupyterHub without stopping the Notebook Server first,
the Notebook Server will run until the time you set up when starting it. This could result in unintended increased SU usage.

Using Jupyter Notebook

After the notebook server starts, you will see the interface page
showing your home directory.

You can create notebook files, text files and folders, or open terminals
using the New button at the top-right corner under the menu bar.

Details can be found at the official Jupyter Notebook User
Documentation [https://jupyter-notebook.readthedocs.io/en/stable/notebook.html].

Creating Your Python Kernel

	$ ssh <caneid>@triton.ccs.miami.edu to login to Triton

	$ ml anaconda3
or ml wml_anaconda3 if you need to install deep learning packages

	$ conda create -n <your environment> python=<version> <package1> <package2> ...

	$ conda activate <your environment>

	(your environment)$ conda install ipykernel

	(your environment)$
ipython kernel install --user --name <kernel name> --display-name "<the displayed name for the kernel>"

Here is an example:

(Please press y on your keyboard when you see Proceed ([y]/n)?)

$ ml anaconda3
$ conda create -n myenv python=3.7 numpy scipy
$ conda activate myenv
(myenv)$ conda install ipykernel
(myenv)$ ipython kernel install --user --name my_py37_kernel --display-name "My Python 3.7 with NumPy and SciPy"

Later on, you can still install new packages to the kernel using conda install <package> after activating the environment.

Note

If the package could not be found, you can search Anaconda
Cloud [https://anaconda.org/] and choose Platform linux-ppc64le

If Anaconda Cloud does not have the package neither, you could try pip install

Warning

Issues may arise when using pip and conda together.
Only after conda has been used to install as many packages
as possible should pip be used to install any remaining software. If
modifications are needed to the environment, it is best to create a new
environment rather than running conda after pip.

After a package is installed, you can use it in your notebook by running import <package name> in a cell.

Creating Your R kernel

	$ ml anaconda3

	$ conda create -n <your r environemnt> -c conda-forge r-base

	$ conda activate <your r environemnt>

	$ conda install -c conda-forge jupyter_client

	(<your r environemnt>)$ R

	(inside R) > install.packages(c('repr', 'IRdisplay', 'IRkernel'))

	(inside R) > IRkernel::installspec(name='<your r kernel name>', displayname='<display name of your kernel>')

Later on, you can still install new R packages to the kernel by activating the environment, entering R and running install.packages('<package name>')
(The pacakge will be installed at /~/.conda/envs/<your r environment>/lib/R/library)

After a R package is installed, you can use it in your notebook by running library('<package name>') in a cell.

Removing Personal Kernels

You can view a list of all your kernels at the following path:

/home/<your_caneid>/.local/share/jupyter/kernels

From this directory you can delete kernels using Linux rm kernel_name command.

Using Pre-installed Kernels

Several kernels has been pre-installed on Triton. You can use them to test your code if you do not need
additional packages. On the Notebook Dashboard page, you can create a
new notebook file (.ipynb) with a selected kernel by clicking on the
New button at the top-right corner under the menu bar. On the
Notebook Editor page, you can change kernel by clicking Kernel in
the menubar and choosing Change kernel.

	Python 2.7 and Python 3.7 kernels are the Anaconda2 2019.07 and Anaconda3 2019.07 base environments.
Each of them has over 150 packages automatically installed.

	WML CE kernels have the IBM Watson Machine
Learning Community Edition
packages [https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/#/].
(You can check different versions by changing
the Releases version in the Filters bar on the website.)

	R kernel includes the R Base
Package [https://stat.ethz.ch/R-manual/R-devel/library/base/html/base-package.html].

Switching to JupyterLab

After the Jupyter Notebook server starts, you can switch to JupyterLab by changing the url from .../tree to .../lab. If you want to stop the server from JupyterLab, choose File >> Hub Control Panel in the menu bar, then press Stop My Notebook Server button in the panel.

Using R through Anaconda

If you find that the current R modules on Pegasus do not support
dependencies for your needed R packages, an alternative option is
to install them via an Anaconda environment. Anaconda is an open source
distribution that aims to simplify package management
and deployment. It includes numerous data science packages including that of
R.

Anaconda Installation

First you will need to download and install Anaconda in your home directory.

[username@triton ~]$ wget https://repo.anaconda.com/archive/Anaconda3-2021.05-Linux-ppc64le.sh

Unpack and install the downloaded Anaconda bash script

[username@triton ~]$ bash Anaconda3-2021.05-Linux-ppc64le.sh

Configuring Anaconda environment

Activate conda with the new Anaconda3 folder in your home directory (Depending on your download this folder might also be named ‘ENTER’)

[username@triton ~]$ source <path to conda>/bin/activate
[username@triton ~]$ conda init

Configure & prioritize the conda-forge channel. This will be useful for downloading library dependencies for your R packages in your conda environment.

[username@triton ~]$ conda config --add channels conda-forge
[username@triton ~]$ conda config --set channel_priority strict

Create a conda environment that contains R

[username@triton ~]$ conda create -n r4_MyEnv r-base=4.1.0 r-essentials=4.1

Activate your new conda environment

[username@triton ~]$ conda activate r4_MyEnv
(r4_MyEnv) [username@triton ~]$

Note: the syntax to the left of your command line (r4_MyEnv) will indicate which conda environment
is currently active, in this case the R conda environment you just created.

Common R package dependencies

Some R packages like ‘tidycensus’, ‘sqldf’, and ‘kableExtra’ require additional
library dependencies in order to install properly. To install library dependencies you may
need for your R packages, you can use the following command:

(r4_MyEnv) [username@triton ~]$ conda install -c conda-forge <library_name>

To check if a library depenency is availabe through the conda-forge channel, use the
following link: https://anaconda.org/conda-forge

Below is an example of installing library dependencies needed for ‘tidycensus’, then the R package itself.

(r4_MyEnv) [username@triton ~]$ conda install -c conda-forge udunits2
(r4_MyEnv) [username@triton ~]$ conda install -c conda-forge gdal
(r4_MyEnv) [username@triton ~]$ conda install -c conda-forge r-rgdal
(r4_MyEnv) [username@triton ~]$ R
> install.packages('tidycensus')

Activating conda environment upon login

Whenever you login, you will need to re-activate your conda environment to re-enter it.
To avoid this, you can edit your .bashrc file in your home directory

[username@triton ~]$ vi ~/.bashrc

Place the following lines in the .bashrc file:

conda activate r4_MyEnv

Then ‘:wq!’ to write, quite and save the file. Upon logging in again your R conda environment will automatically be active.

If you would like to deactivate your conda environment at any time, use the following command:

(r4_MyEnv) [username@triton ~]$ conda deactivate r4_MyEnv

To obtain a list of your conda environments, use the following command:

[username@triton ~]$ conda env list

Running jobs

In order to properly run a job using R within a conda environment you will need to
intiate & activate the conda environment within the job script, otherwise the job may fail to find your
version of R. Please see the example job script below:

#!/bin/bash
#BSUB -J jobName
#BSUB -P projectName
#BSUB -o jobName.%J.out
#BSUB -e jobName.%J.err
#BSUB -W 1:00
#BSUB -q normal
#BSUB -n 1
#BSUB -u youremail@miami.edu

. “/home/caneid/anaconda3/etc/profile.d/conda.sh”
conda activate r4_MyEnv

cd /path/to/your/R_file.R

R CMD BATCH R_file.R

Note: Sometimes you may need to use the ‘Rscript’ command instead of ‘R CMD BATCH’ to run your R file within the job script.

Triton Job Scheduling

	Job Scheduler – LSF
	LSF Batch Jobs

	Job Queues

	LSF Commands
	Scheduling Jobs

	Monitoring Jobs

	Examining Job Output

	LSF Job Scripts
	Example script for a serial Job

	Example scripts for parallel jobs

	Interactive Jobs
	Interactive Job Utilizing X11 client

Job Scheduling with LSF

Triton currently uses the LSF resource manager to schedule all
compute resources. LSF (load sharing facility) supports over 1500
users and over 200,000 simultaneous job submissions. Jobs are submitted
to queues, the software categories we define in the scheduler to
organize work more efficiently. LSF distributes jobs submitted by users
to our over 340 compute nodes according to queue, user priority, and
available resources. You can monitor your job status, queue position,
and progress using LSF commands.

Tip

Reserve an appropriate amount of resources through LSF for your jobs.

If you do not know the resources your jobs need, use the
debug queue to benchmark your jobs. More on Pegasus
Queues and LSF Job Scripts

Warning

Jobs with insufficient resource allocations interfere with cluster performance and the IDSC account responsible for those jobs may be suspended (Policies [https://ccs.miami.edu/ac/policies]).

Tip

Stage data for running jobs exclusively in the /scratch file system, which is optimized for fast data access.

Any files used as input for your jobs must first be transferred to /scratch. See Pegasus
Resource Allocations for more information. The
/nethome file system is optimized for mass data storage and is therefore
slower-access.

Warning

Using /nethome while running jobs degrades the performance of the entire system and the IDSC account responsible may be suspended*** (Policies [https://ccs.miami.edu/ac/policies]).

Tip

Do not background processes with the & operator in LSF.

These spawned processes cannot be killed with bkill after the parent is
gone.

Warning

Using the & operator while running jobs degrades the performance of the entire system and the IDSC account responsible may be suspended (Policies [https://ccs.miami.edu/ac/policies]).

LSF Batch Jobs

Batch jobs are self-contained programs that require no intervention to
run. Batch jobs are defined by resource requirements such as how many
cores, how much memory, and how much time they need to complete. These
requirements can be submitted via command line flags or a script file.
Detailed information about LSF commands and example script files can be
found later in this guide.

	Create a job scriptfile

Include a job name -J, the information LSF needs to allocate
resources to your job, and names for your output and error files.

scriptfile
#BSUB -J test
#BSUB -q normal
#BSUB -P myproject
#BSUB -o %J.out
...

	Submit your job to the appropriate project and queue with
bsub < scriptfile

Upon submission, a jobID and the queue name are returned.

[username@triton ~]$ bsub < scriptfile
Job <6021006> is submitted to queue <normal>.

	Monitor your jobs with bjobs

Flags can be used to specify a single job or another user’s jobs.

[username@triton ~]$ bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
4225 usernam RUN normal m1 16*n060 testjob Mar 2 11:53

	Examine job output files

Once your job has completed, view output information.

[username@triton ~]$ cat test.out
Sender: LSF System <lsfadmin@n069.triton.edu>
Subject: Job 6021006: <test> in cluster <triton> Done
Job <test> was submitted from host <login4.triton.edu> by user <username> in cluster <mk2>.
Job was executed on host(s) <8*n069>, in queue <normal>, as user <username> in cluster <mk2>.
...

Triton Job Queues

Triton queues are organized using limits like job size, job length, job
purpose, and project. In general, users run jobs on Pegasus with equal
resource shares. Current or recent resource usage lowers the priority
applied when LSF assigns resources for new jobs from a user’s account.

The bigmem queue is available for jobs requiring nodes with expanded
memory. Submitting jobs to this queue requires project membership. Do
not submit jobs that can run on the general and parallel queues to the
bigmem queue.

Triton Job Queues

	Queue Name

	Processors (Cores)

	Memory

	Wall time default / max

	Description

	normal

	512

	256GB max

	1 day / 7 days

	Parallel and serial jobs up to 256GB memory per host

	bigmem

	40

	250GB max hosts

	4 hours / 5 days

	Jobs requiring nodes with expanded memory up to 1TB

	short

	64

	25GB max

	30 mins / 30 mins

	Jobs less than 1 hour wall time. Scheduled with higher priority.

	interactive

	40

	250GB max

	6 hours / 1 day

	Interactive jobs
 only max 1 job per user

Triton LSF Commands

LSF 9.1.1 Documentation [https://ccs.maimi.edu/ac/lsf/9.1.1/]

Common LSF commands and descriptions:

	Command

	Purpose

	bsub

	Submits a job to LSF. Define resource requirements with flags.

	bsub < scriptfile

	Submits a job to LSF via script file. The redirection symbol < is
required when submitting a job script file

	bjobs

	Displays your running and pending jobs.

	bhist

	Displays historical information about your finished jobs.

	bkill

	Removes/cancels a job or jobs from the class.

	bqueues

	Shows the current configuration of queues.

	bhosts

	Shows the load on each node.

	bpeek

	Displays stderr and stdout from your unfinished job.

Scheduling Jobs

The command bsub will submit a job for processing. You must include
the information LSF needs to allocate the resources your job requires,
handle standard I/O streams, and run the job. For more information about
flags, type bsub -h at the Pegasus prompt. Detailed information can
be displayed with man bsub. On submission, LSF will return the job
id which can be used to keep track of your job.

[username@triton ~]$ bsub -J jobname -o %J.out -e %J.err -q normal -P myproject myprogram
Job <2607> is submitted to general queue .

The Job Scripts section has more information about organizing multiple
flags into a job script file for submission.

Monitoring Jobs

bjobs

The commands bjobs displays information about your own pending,
running, and suspended jobs.

[username@triton ~]$ bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
4225 usernam RUN normal m1 16*n060 testjob Mar 2 11:53
 16*n061
 16*n063
 16*n064

For details about your particular job, issue the command
bjobs -l jobID where jobID is obtained from the JOBID field
of the above bjobs output. To display a specific user’s jobs, use
bjobs -u username. To display all user jobs in paging format, pipe
output to less:

[username@triton ~]$ bjobs -u all | less
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5990529 axt651 RUN interactiv login4.pega n002 bash Feb 13 15:23
6010636 zxh69 RUN normal login4.pega 16*n178 *acsjob-01 Feb 23 11:36
 16*n180
 16*n203
 16*n174
6014246 swishne RUN interactiv n002.pegasu n002 bash Feb 24 14:10
6017561 asingh PEND interactiv login4.pega matlab Feb 25 14:49
...

bhist

bhist displays information about your recently finished jobs. CPU
time is not normalized in bhist output. To see your finished and
unfinished jobs, use bhist -a.

bkill

bkill kills the last job submitted by the user running the command,
by default. The command bkill jobID will remove a specific job from
the queue and terminate the job if it is running. bkill 0 will
kill all jobs belonging to current user.

[username@triton ~]$ bkill 4225
Job <4225> is being terminated

On Pegasus (Unix), SIGINT and SIGTERM are sent to give the job a chance
to clean up before termination, then SIGKILL is sent to kill the job.

bqueues

bqueues displays information about queues such as queue name, queue
priority, queue status, job slot statistics, and job state statistics.
CPU time is normalized by CPU factor.

[username@triton ~]$ bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
bigmem 500 Open:Active - 16 - - 1152 1120 32 0
normal 100 Open:Active - - - - 9677 5969 3437 0
interactive 30 Open:Active - 4 - - 13 1 12 0

bhosts

bhosts displays information about all hosts such as host name, host
status, job state statistics, and jobs lot limits. bhosts -s
displays information about numeric resources (shared or host-based) and
their associated hosts. bhosts hostname displays information about
an individual host and bhosts -w displays more detailed host status.
closed_Full means the configured maximum number of running jobs has been
reached (running jobs will not be affected), no new job will be assigned
to this host.

[username@triton ~]$ bhosts -w | less
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
n001 ok - 16 14 14 0 0 0
n002 ok - 16 4 4 0 0 0
...
n342 closed_Full - 16 16 12 0 0 4
n343 closed_Full - 16 16 16 0 0 0
n344 closed_Full - 16 16 16 0 0 0

bpeek

Use bpeek jobID to monitor the progress of a job and identify
errors. If errors are observed, valuable user time and system resources
can be saved by terminating an erroneous job with bkill jobID. By
default, bpeek displays the standard output and standard error
produced by one of your unfinished jobs, up to the time the command is
invoked. bpeek -q queuename operates on your most recently submitted
job in that queue and bpeek -m hostname operates on your most
recently submitted job dispatched to the specified host.
bpeek -f jobID display live outputs from a running job and it can be
terminated by Ctrl-C (Windows & most Linux) or Command-C (Mac).

Examining Job Output

Once your job has completed, examine the contents of your job’s output
files. Note the script submission under User input, whether the job
completed, and the Resource usage summary.

[username@triton ~]$ cat test.out
Sender: LSF System <lsfadmin@n069.triton.edu>
Subject: Job 6021006: <test> in cluster <mk2> Done
Job <test> was submitted from host <login4.triton.edu> by user <username> in cluster <mk2>.
Job was executed on host(s) <8*n069>, in queue <general>, as user <username> in cluster <mk2>.
...
Your job looked like:
--
LSBATCH: User input
#!/bin/sh
#BSUB -n 16
#BSUB -J test
#BSUB -o test.out
...
--
Successfully completed.
Resource usage summary:
CPU time : 2.26 sec.
Max Memory : 30 MB
Average Memory : 30.00 MB
...
PS:
Read file <test.err> for stderr output of this job.

Triton LSF Job Scripts

The command bsub < ScriptFile will submit the given script for
processing. Your script must contain the information LSF needs to
allocate the resources your job requires, handle standard I/O streams,
and run the job. For more information about flags, type bsub -h or
man bsub at the Triton prompt. Example scripts and descriptions are
below.

You must be a member of a project to submit jobs to it. See
Projects for more information.

On submission, LSF will return the jobID which can be used to track
your job.

[username@triton ~]$ bsub < test.job
Job <4225> is submitted to the default queue <normal>.

Example script for a serial Job

test.job

#!/bin/bash
#BSUB -J myserialjob
#BSUB -P myproject
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -W 1:00
#BSUB -q normal
#BSUB -n 1
#BSUB -R "rusage[mem=128M]"
#BSUB -B
#BSUB -N
#BSUB -u myemail@miami.edu
#
Run serial executable on 1 cpu of one node
cd /path/to/scratch/directory
./test.x a b c

Here is a detailed line-by-line breakdown of the keywords and their
assigned values listed in this script:

ScriptFile_keywords

#!/bin/bash
specifies the shell to be used when executing the command portion of the script.
The default is Bash shell.

BSUB -J serialjob
assign a name to job. The name of the job will show in the bjobs output.

#BSUB -P myproject
specify the project to use when submitting the job. This is required when a user has more than one project on Triton.

#BSUB -e %J.err
redirect std error to a specified file

#BSUB -W 1:00
set wall clock run time limit of 1 hour, otherwise queue specific default run time limit will be applied.

#BSUB -q normal
specify queue to be used. Without this option, default 'normal' queue will be applied.

#BSUB -n 1
specify number of processors. In this job, a single processor is requested.

#BSUB -R "rusage[mem=128M]"
specify that this job requests 128 megabytes of RAM. You can use other units (K(kilobytes), M(megabytes), G(gigabytes), T(terabytes)).

#BSUB -B
send mail to specified email when the job is dispatched and begins execution.

#BSUB -u example@miami.edu
send notification through email to example@miami.edu.

#BSUB -N
send job statistics report through email when job finishes.

Example scripts for parallel jobs

We recommend using IBM Advance Toolchain and SMPI unless you have specific reason for using OpenMP or OpenMPI. IBM’s SMPI scales better and has better performance than both OpenMP or OpenMPI on Triton.

For optimum performance, use the #BSUB -R "span[ptile=40]". This requires the LSF job scheduler to allocate 40 processors per host, ensuring all processors on a single host are used by that job.

Reserve enough memory for your jobs. Memory reservations are per core. Parallel job performance may be affected, or even interrupted, by other badly-configured jobs running on the same host.

mpi_hello_world.job

$ cat mpi_hello_world.job
#!/bin/sh
#BSUB -n 20
#BSUB -J mpi_hello_world
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -a openmpi
#BSUB -R "span[ptile=4]"
#BSUB -q normal

Use gcc/8.3.1 and openmpi/4.0.5
ml gcc/8.3.1 openmpi/4.0.5

Use the optimized IBM Advance Toolkit (gcc 8.3.1) and smpi
ml at smpi

mpirun -n 20 ./mpi_hello_world

mpi_hello_world.c

$ cat mpi_hello_world.c
#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv) {
 // Initialize the MPI environment
 MPI_Init(NULL, NULL);

 // Get the number of processes
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 // Get the name of the processor
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 int name_len;
 MPI_Get_processor_name(processor_name, &name_len);

 // Print off a hello world message
 printf("Hello world from processor %s, rank %d out of %d processors\n",
 processor_name, world_rank, world_size);

 // Finalize the MPI environment.
 MPI_Finalize();
}

Compile the mpi_hello_world.c file

$ ml gcc/8.3.1
$ ml openmpi/4.0.5
$ mpicc -o mpi_hello_world mpi_hello_world.c

Run the mpi_hello_world.job file

$ bsub < mpi_hello_world.job
Job <981431> is submitted to queue <normal>.

Get mpi_hello_world.job status

$ bjobs -l 284204

Job <284204>, Job Name <mpi_hello_world>, User <nra20>, Project <default>, Status <DONE>
...

Wed Jan 11 11:251:07: Done successfully. The CPU time used is 9.7 seconds.
 HOST: t039; CPU_TIME: 0 seconds
 HOST: t072; CPU_TIME: 0 seconds
 HOST: t059; CPU_TIME: 0 seconds
 HOST: t047; CPU_TIME: 0 seconds
 HOST: t017; CPU_TIME: 0 seconds

 MEMORY USAGE:
 MAX MEM: 14 Mbytes; AVG MEM: 9 Mbytes
 ...

$ cat 284204.out
Sender: LSF System <hpc@ccs.miami.edu>
Subject: Job 284204: <mpi_hello_world> in cluster <triton> Done

Job <mpi_hello_world> was submitted from host <login1> by user <nra20> in cluster <triton> at Wed Jan 11 11:25:03 2021
Job was executed on host(s) <4*t039>, in queue <normal>, as user <nra20> in cluster <triton> at Wed Jan 11 11:25:03 2021
 <4*t071>
 <4*t059>
 <4*t047>
 <4*t017>

...

Your job looked like:

--
LSBATCH: User input
#!/bin/sh
#BSUB -n 20
#BSUB -J mpi_hello_world
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -a openmpi
#BSUB -R "span[ptile=4]"
#BSUB -q normal

Use openmpi
ml gcc/8.3.1 openmpi/4.0.5

Use the optimized IBM Advance Toolkit (gcc 8.3.1) and smpi
ml at smpi

mpirun -n 20 ./mpi_hello_world

--

Successfully completed.

Resource usage summary:

 CPU time : 2.49 sec.
 Max Memory : 53 MB
 Average Memory : 35.67 MB
 Total Requested Memory : -
 Delta Memory : -
 Max Swap : 1 MB
 Max Processes : 8
 Max Threads : 20
 Run time : 3 sec.
 Turnaround time : 6 sec.

The output (if any) follows:

Hello world from processor t047, rank 14 out of 20 processors
Hello world from processor t039, rank 3 out of 20 processors
Hello world from processor t039, rank 0 out of 20 processors
Hello world from processor t039, rank 1 out of 20 processors
Hello world from processor t039, rank 2 out of 20 processors
Hello world from processor t017, rank 17 out of 20 processors
Hello world from processor t047, rank 15 out of 20 processors
Hello world from processor t017, rank 18 out of 20 processors
Hello world from processor t047, rank 12 out of 20 processors
Hello world from processor t017, rank 19 out of 20 processors
Hello world from processor t047, rank 13 out of 20 processors
Hello world from processor t017, rank 16 out of 20 processors
Hello world from processor t072, rank 5 out of 20 processors
Hello world from processor t059, rank 8 out of 20 processors
Hello world from processor t072, rank 6 out of 20 processors
Hello world from processor t072, rank 7 out of 20 processors
Hello world from processor t072, rank 4 out of 20 processors
Hello world from processor t059, rank 9 out of 20 processors
Hello world from processor t059, rank 10 out of 20 processors
Hello world from processor t059, rank 11 out of 20 processors

PS:

Read file <284204.err> for stderr output of this job.

Triton Interactive Jobs

HPC clusters primarily take batch jobs and run them in the
background—users do not need to interact with the job during the
execution. However, sometimes users do need to interact with the
application. For example, the application needs the input from the
command line or waits for a mouse event in X windows. Use
bsub -Is -q interactive command to launch interactive work on
Triton.

[username@triton ~]$ bsub -Is -q interactive bash

Upon exiting the interactive job, you will be returned to one of the
login nodes.

Interactive Job Utilizing X11 client

Additionally, the interactive queue can run X11 jobs. The bsub -XF
option is used for X11 jobs, for example:

[username@triton ~]$ bsub -Is -q interactive -XF
Job <50274> is submitted to queue <interactive>.
<<ssh X11 forwarding job>>
<<Waiting for dispatch ...>>
<<Starting on n003.triton.edu>>

Upon exiting the X11 interactive job, you will be returned to one of the
login nodes.

To run an X11 application, establish an X tunnel with SSH when
connecting to Triton. For example,

ssh -X username@triton.ccs.miami.edu

Note that by default, the auth token is good for 20 minutes. SSH will
block new X11 connections after 20 minutes. To avoid this on Linux or OS
X, run ssh -Y instead, or set the option ForwardX11Trusted yes
in your ~/.ssh/config.

In Windows, use Cygwin/X [https://www.cygwin.com/] to provide a
Linux-like environment. Then run ssh -Y or set the option in your
~/.ssh/config file.

Pegasus user guides

The Pegasus cluster has been upgraded to CentOS 7.

If you encounter issues running your jobs, let our IDSC cluster support team know via email to IDSC team (hpc@ccs.miami.edu) .

	Pegasus Environment
	Pegasus Introduction

	Connecting

	Pegasus Projects & Resources

	Pegasus Job Scheduling
	Job Scheduler – LSF

	Job Queues

	LSF Commands

	LSF Job Scripts

	Interactive Jobs

	Pegasus Software
	Software Modules

	Application Development

	Parallel Computing

	Installing Software on a Cluster

	Allinea

	Amazon Web Services CLI

	MATLAB

	Perl

	Python

	Python Virtual Environments

	R

	RStudio

	SAS

	Using R through Anaconda

	Jupyterhub

	SimVascular

	Pegasus FAQ
	Pegasus Projects

	Pegasus Software

	Pegasus Job Scheduling

Pegasus Environment

	Pegasus Introduction
	Pegasus Filesystems

	Pegasus Environment Links

	Pegasus Job Submissions

	Connecting
	Pegasus Welcome Message

	Pegasus Projects & Resources
	Using projects in computing jobs

Pegasus Environment Introduction

The Pegasus cluster is the University of Miami’s 350-node
high-performance supercomputer, available to all University of Miami
employees and students. Pegasus resources such as hardware (login and
compute nodes) and system software are shared by all users.

Tip

Before running commands, submitting jobs, or using software on the Pegasus supercomputer, understand our core Policies.

Details: Pegasus Supercomputer
Credentials: IDSC Account
Access & Allocations: Policies
Operating System: CentOS 7.6
Default Shell: Bash
Data Transfer: SCP and SFTP

We encourage new users to carefully read our documentation on Pegasus
and available resources, especially users who may be unfamiliar with
high-performance computing, Unix-based systems, or batch job scheduling.
Understanding what your jobs do on the cluster helps keep Pegasus
running smoothly for everyone.

	Do not run resource-intensive jobs on the Pegasus login nodes.
Submit your production jobs to LSF, and use the interactive
queue and LSF Job
Scripts below. Jobs with insufficient
resource allocations interfere with cluster performance and the IDSC
account responsible for those jobs may be suspended.

	Stage data for running jobs exclusively in the /scratch file
system, which is optimized for fast data access. Any files used as
input for your jobs must first be transferred to /scratch. The
/nethome file system is optimized for mass data storage and is
therefore slower-access. Using /nethome while running jobs degrades
the performance of the entire system and the IDSC account responsible
may be suspended.

	Include your projectID in your job submissions. Access to IDSC Advanced Computing resources is managed on a project basis. This allows us to better support interaction between teams (including data sharing) at the University of Miami regardless of group, school, or campus. Any University of Miami faculty member or Principal Investigator (PI) can request a new project. All members of a project share that project’s resource allocations. More on Projects here.

Connecting to Pegasus: To access the Pegasus
supercomputer, open a secure shell (SSH) connection to
pegasus.ccs.miami.edu and log in with your active IDSC account. Once
authenticated, you should see the Pegasus welcome message – *which
includes links to Pegasus documentation* and information about your
disk quotas – then the Pegasus command prompt.

--
 Welcome to the Pegasus Supercomputer
 Center for Computational Science, University of Miami
--
...
...
...
--------------------------Disk Quota------------------------------
filesystem | project | used(GB) | quota (GB) | Util(%)
==
nethome | user | 0.76 | 250.00 | 0%
scratch | projectID | 93.32 | 20000.00 | 0%
--
 Files on /scratch are subject to purging after 21 days
--
[username@pegasus ~]$

Pegasus Filesystems

The landing location on Pegasus is your home directory, which
corresponds to /nethome/username. As shown in the Welcome message,
Pegasus has two parallel file systems available to users: nethome
and scratch.

Pegasus Filesystems

	Filesystem

	Description

	Notes

	/nethome

	permanent, quota’d, not backed-up

	directories are limited to 250GB and intended primarily for basic account information, source codes and binaries

	/scratch

	high-speed storage

	directories should be used for compiles and run-time input & output files

Warning

Do not stage job data in the /nethome file system. If your jobs writes or read files from Pegasus, put those files exclusively in the /scratch file system.

Pegasus Environment Links

Resource allocations : Cluster resources,
including CPU hours and scratch space, are allocated to projects. To
access resources, all IDSC accounts must belong to a project with active
resource allocations. Join projects by contacting Principal
Investigators (PIs) directly.

Transferring files : Whether on nethome or
scratch, transfer data with secure copy (SCP) and secure FTP (SFTP)
between Pegasus file systems and local machines. Use Pegasus login nodes
for these types of transfers. See the link for more information about
transferring large amounts of data from systems outside the University
of Miami.

Software on Pegasus : To use system
software on Pegasus, first load the software using the module load
command. Some modules are loaded automatically when you log into
Pegasus. The modules utility handles any paths or libraries needed for
the software to run. You can view currently loaded modules with module
list and check available software with module avail package.

Warning

Do not run production jobs on the login nodes.

Once your preferred software module is loaded, submit a job to the Pegasus job scheduler to use it.

Pegasus Job Submissions

Job submissions : Pegasus cluster compute
nodes are the workhorses of the supercomputer, with significantly more
resources than the login nodes. Compute nodes are grouped into
queues and their available resources are assigned through scheduling
software (LSF). To do work on Pegasus, submit either a batch or an
interactive job to LSF for an appropriate queue.

In shared-resource systems like Pegasus, you must tell the LSF scheduler
how much memory, CPU, time, and other resources your jobs will use while
they are running. If your jobs use more resources than you requested
from LSF, those resources may come from other users’ jobs (and vice
versa). This not only negatively impacts everyone’s jobs, it degrades
the performance of the entire cluster. If you do not know the resources
your jobs will use, benchmark them in the debug queue.

To test code interactively or install extra software modules at a prompt
(such as with Python or R), submit an interactive job to the interactive
queue in LSF. This will navigate you to a compute node for your work,
and you will be returned to a login node upon exiting the job. Use the
interactive queue for resource-intensive command-line jobs such as sort,
find, awk, sed, and others.

Connecting to Pegasus

DNS : pegasus.ccs.miami.edu

Access : SSH over secure UM networks, x11

Credentials : IDSC Account

Pegasus Welcome Message

The Pegasus welcome message includes links to Pegasus documentation and
information about your disk quotas.

--
 Welcome to the Pegasus Supercomputer
 Center for Computational Science, University of Miami
--
...
...
...
--------------------------Disk Quota------------------------------
filesystem | project | used(GB) | quota (GB) | Util(%)
==
nethome | user | 0.76 | 250.00 | 0%
scratch | projectID | 93.32 | 20000.00 | 0%
--
 Files on /scratch are subject to purging after 21 days
--
[username@pegasus ~]$

Transferring files

Transferring files to IDSC systems

Pegasus Projects & Resources

Access to IDSC Advanced Computing resources is managed on a project
basis. This allows us to better support interaction between teams
(including data sharing) at the University of Miami regardless of group,
school, or campus. Project-based resource allocation also gives
researchers the ability to request resources for short-term work. Any
University of Miami faculty member or Principal Investigator (PI) can
request a new project. All members of a project share that project’s
resource allocations.

To join a project, contact the project owner. PIs and faculty, request new IDSC Projects here [https://idsc.miami.edu/project_request] (https://idsc.miami.edu/project_request)

Using projects in computing jobs

To run jobs using your project’s resources, submit jobs with your
assigned projectID using the -P argument to bsub:
bsub -P projectID. For more information about LSF and job
scheduling, see Scheduling Jobs on Pegasus.

For example, if you were assigned the project id “abc”, a batch
submission from the command line would look like:

$ bsub -P abc < JOB_SCRIPT_NAME

and an interactive submission from the command line would look like:

$ bsub -P abc -Is -q interactive -XF command

When your job has been submitted successfully, the project and queue
information will be printed on the screen.

Job is submitted to <abc> project.

Job <11234> is submitted to default queue <general>.

The cluster scheduler will only accept job submissions to active
projects. The IDSC user must be a current member of that project.

Pegasus Job Scheduling

	Job Scheduler – LSF
	LSF Batch Jobs

	Job Queues

	LSF Commands
	Scheduling Jobs

	Monitoring Jobs

	Examining Job Output

	LSF Job Scripts
	Example script for a serial Job

	Example scripts for parallel jobs

	Interactive Jobs
	Interactive Job Utilizing X11 client

Pegasus Job Scheduling with LSF

Pegasus currently uses the LSF resource manager to schedule all
compute resources. LSF (load sharing facility) supports over 1500
users and over 200,000 simultaneous job submissions. Jobs are submitted
to queues, the software categories we define in the scheduler to
organize work more efficiently. LSF distributes jobs submitted by users
to our over 340 compute nodes according to queue, user priority, and
available resources. You can monitor your job status, queue position,
and progress using LSF commands.

Tip

Reserve an appropriate amount of resources through LSF for your jobs.

If you do not know the resources your jobs need, use the
debug queue to benchmark your jobs. More on Pegasus
Queues and LSF Job Scripts

Warning

Jobs with insufficient resource allocations interfere with cluster performance and the IDSC account responsible for those jobs may be suspended (Policies).

Tip

Stage data for running jobs exclusively in the /scratch file system, which is optimized for fast data access.

Any files used as input for your jobs must first be transferred to /scratch. See Pegasus
Resource Allocations for more information. The
/nethome file system is optimized for mass data storage and is therefore
slower-access.

Warning

Using /nethome while running jobs degrades the performance of the entire system and the IDSC account responsible may be suspended*** (Policies).

Tip

Do not background processes with the & operator in LSF.

These spawned processes cannot be killed with bkill after the parent is
gone.

Warning

Using the & operator while running jobs degrades the performance of the entire system and the IDSC account responsible may be suspended (Policies).

LSF Batch Jobs

Batch jobs are self-contained programs that require no intervention to
run. Batch jobs are defined by resource requirements such as how many
cores, how much memory, and how much time they need to complete. These
requirements can be submitted via command line flags or a script file.
Detailed information about LSF commands and example script files can be
found later in this guide.

	Create a job scriptfile

Include your project ID -P, a job name -J, the information LSF needs to allocate
resources to your job, and names for your output and error files.

scriptfile
#BSUB -J test
#BSUB -q general
#BSUB -P myproject
#BSUB -o %J.out
...

	Submit your job to the appropriate project and queue with
bsub < scriptfile

Upon submission, the project is returned along with a jobID and the queue name.

[username@pegasus ~]$ bsub < scriptfile
Job is submitted to <my_project> project.
Job <6021006> is submitted to queue <general>.

	Monitor your jobs with bjobs

Flags can be used to specify a single job or another user’s jobs.

[username@pegasus ~]$ bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
4225 usernam RUN general m1 16*n060 testjob Mar 2 11:53

	Examine job output files

Once your job has completed, view output information.

[username@pegasus ~]$ cat test.out
Sender: LSF System <lsfadmin@n069.pegasus.edu>
Subject: Job 6021006: <test> in cluster <mk2> Done
Job <test> was submitted from host <login4.pegasus.edu> by user <username> in cluster <mk2>.
Job was executed on host(s) <8*n069>, in queue <general>, as user <username> in cluster <mk2>.
...

Pegasus Job Queues

Pegasus queues are organized using limits like job size, job length, job
purpose, and project. In general, users run jobs on Pegasus with equal
resource shares. Current or recent resource usage lowers the priority
applied when LSF assigns resources for new jobs from a user’s account.

Parallel jobs are more difficult to schedule as they are inherently
larger. Serial jobs can “fit into” the gaps left by larger jobs if
serial jobs use short enough run time limits and small enough numbers of
processors.

The parallel queue is available for jobs requiring 16 or more cores.
Submitting jobs to this queue *requires* resource distribution
-R "span[ptile=16]".

The bigmem queue is available for jobs requiring nodes with expanded
memory. Submitting jobs to this queue requires project membership. Do
not submit jobs that can run on the general and parallel queues to the
bigmem queue.

Warning

Jobs using less than 1.5G of memory per core on the bigmem queue are in violation of acceptable use policies and the IDSC account responsible for those jobs may be suspended (Policies).

Pegasus Job Queues

	Queue Name

	Processors (Cores)

	Memory

	Wall time default / max

	Description

	general

	15-

	24GB max

	1 day / 7 days

	jobs up to 15 cores, up to 24GB memory

	parallel

	16+

	24GB max

	1 day / 7 days

	parallel jobs requiring 16 or more cores, up to 24GB memory.
 requires resource distribution -R “span[ptile=16]”

	bigmem

	64 max

	250GB max

	4 hours / 5 days

	jobs requiring nodes with expanded memory

	debug

	64 max

	24GB max

	30 mins / 30 mins

	job debugging

	interactive

	15-

	250GB max

	6 hours / 1 day

	interactive jobs
 max 1 job per user

	gpu

	xx

	320 max

	1 day / 7 days

	gpu debugging restricted queue

	phi

	xx

	320 max

	1 day / 7 days

	phi debugging restricted queue

Pegasus LSF Commands

LSF 9.1.1 Documentation [https://ccs.maimi.edu/ac/lsf/9.1.1/]

Common LSF commands and descriptions:

	Command

	Purpose

	bsub

	Submits a job to LSF. Define resource requirements with flags.

	bsub < scriptfile

	Submits a job to LSF via script file. The redirection symbol < is
required when submitting a job script file

	bjobs

	Displays your running and pending jobs.

	bhist

	Displays historical information about your finished jobs.

	bkill

	Removes/cancels a job or jobs from the class.

	bqueues

	Shows the current configuration of queues.

	bhosts

	Shows the load on each node.

	bpeek

	Displays stderr and stdout from your unfinished job.

Scheduling Jobs

The command bsub will submit a job for processing. You must include
the information LSF needs to allocate the resources your job requires,
handle standard I/O streams, and run the job. For more information about
flags, type bsub -h at the Pegasus prompt. Detailed information can
be displayed with man bsub. On submission, LSF will return the job
id which can be used to keep track of your job.

[username@pegasus ~]$ bsub -J jobname -o %J.out -e %J.err -q general -P myproject myprogram
Job <2607> is submitted to general queue .

The Job Scripts section has more information about organizing multiple
flags into a job script file for submission.

Monitoring Jobs

bjobs

The commands bjobs displays information about your own pending,
running, and suspended jobs.

[username@pegasus ~]$ bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
4225 usernam RUN general m1 16*n060 testjob Mar 2 11:53
 16*n061
 16*n063
 16*n064

For details about your particular job, issue the command
bjobs -l jobID where jobID is obtained from the JOBID field
of the above bjobs output. To display a specific user’s jobs, use
bjobs -u username. To display all user jobs in paging format, pipe
output to less:

[username@pegasus ~]$ bjobs -u all | less
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5990529 axt651 RUN interactiv login4.pega n002 bash Feb 13 15:23
6010636 zxh69 RUN general login4.pega 16*n178 *acsjob-01 Feb 23 11:36
 16*n180
 16*n203
 16*n174
6014246 swishne RUN interactiv n002.pegasu n002 bash Feb 24 14:10
6017561 asingh PEND interactiv login4.pega matlab Feb 25 14:49
...

bhist

bhist displays information about your recently finished jobs. CPU
time is not normalized in bhist output. To see your finished and
unfinished jobs, use bhist -a.

bkill

bkill kills the last job submitted by the user running the command,
by default. The command bkill jobID will remove a specific job from
the queue and terminate the job if it is running. bkill 0 will
kill all jobs belonging to current user.

[username@pegasus ~]$ bkill 4225
Job <4225> is being terminated

On Pegasus (Unix), SIGINT and SIGTERM are sent to give the job a chance
to clean up before termination, then SIGKILL is sent to kill the job.

bqueues

bqueues displays information about queues such as queue name, queue
priority, queue status, job slot statistics, and job state statistics.
CPU time is normalized by CPU factor.

[username@pegasus ~]$ bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
bigmem 500 Open:Active - 16 - - 1152 1120 32 0
visx 500 Open:Active - - - - 0 0 0 0
hihg 500 Open:Active - - - - 0 0 0 0
hpc 300 Open:Active - - - - 2561 1415 1024 0
debug 200 Open:Active - - - - 0 0 0 0
gpu 200 Open:Active - - - - 0 0 0 0
...
general 100 Open:Active - - - - 9677 5969 3437 0
interactive 30 Open:Active - 4 - - 13 1 12 0

bhosts

bhosts displays information about all hosts such as host name, host
status, job state statistics, and jobs lot limits. bhosts -s
displays information about numeric resources (shared or host-based) and
their associated hosts. bhosts hostname displays information about
an individual host and bhosts -w displays more detailed host status.
closed_Full means the configured maximum number of running jobs has been
reached (running jobs will not be affected), no new job will be assigned
to this host.

[username@pegasus ~]$ bhosts -w | less
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
n001 ok - 16 14 14 0 0 0
n002 ok - 16 4 4 0 0 0
...
n342 closed_Full - 16 16 12 0 0 4
n343 closed_Full - 16 16 16 0 0 0
n344 closed_Full - 16 16 16 0 0 0

bpeek

Use bpeek jobID to monitor the progress of a job and identify
errors. If errors are observed, valuable user time and system resources
can be saved by terminating an erroneous job with bkill jobID. By
default, bpeek displays the standard output and standard error
produced by one of your unfinished jobs, up to the time the command is
invoked. bpeek -q queuename operates on your most recently submitted
job in that queue and bpeek -m hostname operates on your most
recently submitted job dispatched to the specified host.
bpeek -f jobID display live outputs from a running job and it can be
terminated by Ctrl-C (Windows & most Linux) or Command-C (Mac).

Examining Job Output

Once your job has completed, examine the contents of your job’s output
files. Note the script submission under User input, whether the job
completed, and the Resource usage summary.

[username@pegasus ~]$ cat test.out
Sender: LSF System <lsfadmin@n069.pegasus.edu>
Subject: Job 6021006: <test> in cluster <mk2> Done
Job <test> was submitted from host <login4.pegasus.edu> by user <username> in cluster <mk2>.
Job was executed on host(s) <8*n069>, in queue <general>, as user <username> in cluster <mk2>.
...
Your job looked like:
--
LSBATCH: User input
#!/bin/sh
#BSUB -n 16
#BSUB -J test
#BSUB -o test.out
...
--
Successfully completed.
Resource usage summary:
CPU time : 2.26 sec.
Max Memory : 30 MB
Average Memory : 30.00 MB
...
PS:
Read file <test.err> for stderr output of this job.

Pegasus LSF Job Scripts

The command bsub < ScriptFile will submit the given script for
processing. Your script must contain the information LSF needs to
allocate the resources your job requires, handle standard I/O streams,
and run the job. For more information about flags, type bsub -h or
man bsub at the Pegasus prompt. Example scripts and descriptions are
below.

You must be a member of a project to submit jobs to it. See
Projects for more information.

On submission, LSF will return the jobID which can be used to track
your job.

[username@pegasus ~]$ bsub < test.job
Job <4225> is submitted to the default queue <general>.

Example script for a serial Job

test.job

#!/bin/bash
#BSUB -J myserialjob
#BSUB -P myproject
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -W 1:00
#BSUB -q general
#BSUB -n 1
#BSUB -R "rusage[mem=128]"
#BSUB -B
#BSUB -N
#BSUB -u myemail@miami.edu
#
Run serial executable on 1 cpu of one node
cd /path/to/scratch/directory
./test.x a b c

Here is a detailed line-by-line breakdown of the keywords and their
assigned values listed in this script:

ScriptFile_keywords

#!/bin/bash
specifies the shell to be used when executing the command portion of the script.
The default is Bash shell.

#BSUB -J serialjob
assign a name to job. The name of the job will show in the bjobs output.

#BSUB -P myproject
specify the project to use when submitting the job. This is required when a user has more than one project on Pegasus.

#BSUB -e %J.err
redirect std error to a specified file

#BSUB -W 1:00
set wall clock run time limit of 1 hour, otherwise queue specific default run time limit will be applied.

#BSUB -q general
specify queue to be used. Without this option, default 'general' queue will be applied.

#BSUB -n 1
specify number of processors. In this job, a single processor is requested.

#BSUB -R "rusage[mem=128]"
specify that this job requests 128 megabytes of RAM per core. Without this, a default RAM setting will be applied: 1500MB per core

#BSUB -B
send mail to specified email when the job is dispatched and begins execution.

#BSUB -u example@miami.edu
send notification through email to example@miami.edu.

#BSUB -N
send job statistics report through email when job finishes.

Example scripts for parallel jobs

We recommend using Intel MPI unless you have specific reason for using
OpenMP. Intel MPI scales better and has better performance than OpenMP.

Submit parallel jobs to the parallel job queue with -q parallel.

For optimum performance, the default resource allocation on the parallel
queue is ptile=16. This requires the LSF job scheduler to allocate
16 processors per host, ensuring all processors on a single host are
used by that job. *Without prior authorization, any jobs using a
number other than 16 will be rejected from the parallel queue.*
Reserve enough memory for your jobs. Memory reservations are per
core. Parallel job performance may be affected, or even interrupted, by
other badly-configured jobs running on the same host.

Example script for Intel/Intel MPI

testparai.job

#!/bin/bash
#BSUB -J mpijob
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -W 1:30
#BSUB -q parallel
#BSUB -n 32 # Request 32 cores
#BSUB -R "span[ptile=16]" # Request 16 cores per node
#BSUB -R "rusage[mem=128]" # Request 128MB per core
#

mpiexec foo.exe

foo.exe is the mpi executable name. It can be followed by its own
argument list.

Example script for MPI/OpenMP

testparao.job

#!/bin/bash
#BSUB -J mpijob
#BSUB -o %J.out
#BSUB -e %J.err
#BSUB -W 1:30
#BSUB -q parallel
#BSUB -n 32 # Request 32 cores
#BSUB -R "span[ptile=16]" # Request 16 cores per node
#BSUB -R "rusage[mem=128]" # Request 128MB per core
#

mpiexec --mca btl self,sm,openib foo.exe

The command line is similar to Intel MPI job above. Option
--mca self,sm,openib tells OpenMP to use lookback, shared memory,
and openib for inter-process communication.

Pegasus Interactive Jobs

HPC clusters primarily take batch jobs and run them in the
background—users do not need to interact with the job during the
execution. However, sometimes users do need to interact with the
application. For example, the application needs the input from the
command line or waits for a mouse event in X windows. Use
bsub -Is -q interactive command to launch interactive work on
Pegasus. Remember to include your Pegasus cluster project ID in your job submissions with the -P flag.

To compile or install personal software on the Pegasus cluster, submit an “interactive” shell job to the Pegasus LSF scheduler and proceed with your compilations

[username@pegasus ~]$ bsub -Is -q interactive -P myProjectID bash

To run a non-graphical interactive Matlab session on the Pegasus cluster, submit an interactive job

[username@pegasus ~]$ bsub -Is -q interactive -P myProjectID matlab -nodisplay

To run an graphical interactive job, add -XF to your bsub flags (more on x11 below)

[username@pegasus ~]$ bsub -Is -q interactive -P myProjectID -XF $(java -jar ~/.local/apps/ImageJ/ij.jar -batch ~/.local/apps/ImageJ/macros/screenmill.txt)

Upon exiting the interactive job, you will be returned to one of the
login nodes.

Interactive Job Utilizing X11 client

Additionally, the interactive queue can run X11 jobs. The bsub -XF
option is used for X11 jobs, for example:

[username@pegasus ~]$ bsub -Is -q interactive -P myProjectID -XF matlab
Job <50274> is submitted to queue <interactive>.
<<ssh X11 forwarding job>>
<<Waiting for dispatch ...>>
<<Starting on n003.pegasus.edu>>

Upon exiting the X11 interactive job, you will be returned to one of the
login nodes.

To run an X11 application, establish an X tunnel with SSH when
connecting to Pegasus. For example,

ssh -X username@pegasus.ccs.miami.edu

Note that by default, the auth token is good for 20 minutes. SSH will
block new X11 connections after 20 minutes. To avoid this on Linux or OS
X, run ssh -Y instead, or set the option ForwardX11Trusted yes
in your ~/.ssh/config.

In Windows, use Cygwin/X [https://www.cygwin.com/] to provide a
Linux-like environment. Then run ssh -Y or set the option in your
~/.ssh/config file.

Pegasus Software

	Software Modules

	Application Development
	Compiling Serial Code

	Compiling Parallel Programs with MPI

	Parallel Computing
	Sample parallel programs:

	The LSF script to run parallel jobs

	Installing Software on a Cluster
	Downloading and extracting files

	Configuring installation and compilation

	Updating PATH

	Persistent PATH

	Allinea

	Amazon Web Services CLI
	Getting Started

	Using AWS s3 buckets from the cli

	AWS s3 Include and Exclude filters

	MATLAB
	Interactive Mode

	Batch Processing

	Parallel Computations

	Note on Matlab cluster configurations

	Perl
	Configuring a Local Library

	Python
	Loading and Switching Python Modules

	Installing Python Modules with Package Managers

	Installing Downloaded Python Modules

	Python Virtual Environments
	Creating Virtual Environments

	Activating Virtual Environments

	Comparing two Python Virtual Environments

	Python virtual environment wrapper

	R
	Batch R

	Interactive R

	Installing additional R packages

	RStudio
	Forwarding X11

	Loading the Module

	First Time configurations

	Launching RStudio jobs through LSF

	Changing Graphical Backend

	SAS
	Non-Interactive Batch Mode

	Using R through Anaconda
	Anaconda Installation

	Configuring Anaconda environment

	Common R package dependencies

	Activating conda environment upon login

	Running jobs

	Jupyterhub
	Introduction

	Using JupyterHub on Pegasus

	Using Jupyter Notebook

	Switching to JupyterLab

	SimVascular
	Forwarding X11

	Loading the Module

	Launching Graphical Interactive Jobs

Pegasus Software Modules

IDSC ACS continually updates applications, compilers, system libraries, etc.
To facilitate this task and to provide a uniform mechanism for accessing
different revisions of software, ACS uses the modules utility. At login,
modules commands set up a basic environment for the default compilers,
tools, and libraries such as:  the $PATH, $MANPATH, and
$LD_LIBRARY_PATH environment variables. There is no need to set them
or update them when updates are made to system and application software.

From Pegasus, users can view currently loaded modules with module
list and check available software with module avail *package*
(omitting the package name will show all available modules). Some
modules are loaded automatically upon login:

[username@pegasus ~]$ module list
Currently Loaded Modulefiles:
 1) perl/5.18.1(default)
[username@pegasus ~]$ module avail R

----------------------------- /share/Modules/hihg ------------------------------
ROOT/5.34.32

----------------------- /share/mfiles/Compiler/gcc/8.3.0 -----------------------
R/3.6.3 R/4.0.3 R/4.1.0(default)

[username@pegasus ~]$ module load R
[username@pegasus ~]$ module list
Currently Loaded Modulefiles:
 1) perl/5.18.1(default) 2) R/4.1.0(default)

The table below lists commonly used modules commands.

Pegasus Modules

	Command

	Purpose

	module avail

	lists all available modules

	module list

	list modules currently loaded

	module purge

	restores original setting by unloading all modules

	module load package

	loads a module e.g., the python package

	module unload package

	unloads a module e.g., the python package

	module switch old new

	replaces old module with new module

	module display package

	displays location and library information about a module

See our Policies page for minimum requirements and more information.

Application Development on Pegasus

MPI and OpenMP modules are listed under Intel and GCC compilers. These MP
libraries have been compiled and built with either the Intel compiler
suite [http://software.intel.com/en-us/intel-compilers/] or the GNU
compiler suite [http://www.gnu.org/software/gcc/].

The following sections present the compiler invocation for serial and MP
executions. All compiler commands can be used for just compiling with
the -c flag (to create just the “.o” object files) or compiling and
linking (to create executables). To use a different (non-default)
compiler, first unload intel, swap the compiler environment, and then
reload the MP environment if necessary.

Note

Only one MP module should be loaded at a time.

Compiling Serial Code

Pegasus has Intel and GCC compilers.

	Vendor

	Compiler

	Module Command

	Example

	intel

	icc (default)

	module load intel

	icc -o foo.exe foo.c

	intel

	ifor (default)

	module load intel

	ifort -o foo.exe foo.f90

	gnu

	gcc

	module load gcc

	gcc -o foo.exe foo.c

	gnu

	gcc

	module load gcc

	gfortran -o foo.exe foo.f90

Compiling Parallel Programs with MPI

The Message Passing Interface (MPI) library allows processes in
a parallel application to communicate with one another. There is no
default MPI library in your Pegasus environment. Choose the desired MPI
implementation for your applications by loading an appropriate MPI
module. Recall that only one MPI module should be loaded at a time.

Pegasus supports Intel MPI and OpenMP for Intel and GCC compilers.

How to load MPI libraries in your Pegasus environment

	Compiler

	MPI

	Module Command

	Example

	intel

	Intel MPI

	module load intel impi

	mpif90 -o foo.exe foo.f90

	intel

	Intel MPI

	module load intel impi

	mpicc -o foo.exe foo.c

	intel

	OpenMP

	module load intel openmpi

	mpif90 -o foo.exe foo.f90

	intel

	OpenMP

	module load intel openmpi

	mpicc -o foo.exe foo.c

	gcc

	OpenMP

	module load openmpi-gcc

	mpif90 -o foo.exe foo.f90

	gcc

	OpenMP

	module load openmpi-gcc

	mpicc -o foo.exe foo.c

Configuration options of MPI on Pegasus

There are three ways to configure MPI on Pegasus. Choose the option that
works best for your job requirements.

	Add the module load command to your startup files.
This is most convenient for users requiring only a single version of
MPI. This method works with all MPI modules.

	Load the module in your current shell.
For current MPI versions, the module load command does not need
to be in your startup files. Upon job submission, the remote
processes will inherit the submission shell environment and use the
proper MPI library. This method does not work with older versions
of MPI.

	Load the module in your job script.
This is most convenient for users requiring different versions of MPI
for different jobs. Ensure your script can execute the
module command properly. For job script information, see
Scheduling Jobs on Pegasus.

Parallel Computing

We recommend using Intel MPI unless you have a specific reason for using
other implementations of MPI such as OpenMPI. We recommend Intel MPI over
other implementations because it results in better scaling and
performance.

Note

Only one MPI module should be loaded at a time.

Sample parallel programs:

C++ source code and compilation

mpi_example1.cpp

//===
// C++ example: MPI Example 1
//===
#include <iostream>
#include <mpi.h>
using namespace std;
int main(int argc, char** argv){
 int iproc;
 MPI_Comm icomm;
 int nproc;
 int i;
 MPI_Init(&argc,&argv);
 icomm = MPI_COMM_WORLD;
 MPI_Comm_rank(icomm,&iproc);
 MPI_Comm_size(icomm,&nproc);
 for (i = 0; i <= nproc - 1; i++){
 MPI_Barrier(icomm);
 if (i == iproc){
 cout << "Rank " << iproc << " out of " << nproc << endl;
 }
 }
 MPI_Finalize();
 return 0;
}

[username@pegasus ~]$ mpicxx -o mpi_example1.x mpi_example1.cpp

C source code and compilation:

mpi_example1.c

//===
// C example: MPI Example 1
//===
#include <stdio.h>
#include "mpi.h"
int main(int argc, char** argv){
int iproc;
int icomm;
int nproc;
int i;
MPI_Init(&argc,&argv);
icomm = MPI_COMM_WORLD;
MPI_Comm_rank(icomm,&iproc);
MPI_Comm_size(icomm,&nproc);
for (i = 0; i <= nproc - 1; i++){
 MPI_Barrier(icomm);
 if (i == iproc){
 printf("%s %d %s %d \n","Rank",iproc,"out of",nproc);
 }
}
MPI_Finalize();
return 0;
}

[username@pegasus ~]$ mpicc -o mpi_example1.x mpi_example1.c

Fortran 90 source code and compilation:

mpi_example1.f90

!===
! Fortran 90 example: MPI test
!===
program mpiexample1
implicit none
include 'mpif.h'
integer(4) :: ierr
integer(4) :: iproc
integer(4) :: nproc
integer(4) :: icomm
integer(4) :: i
call MPI_INIT(ierr)
icomm = MPI_COMM_WORLD
call MPI_COMM_SIZE(icomm,nproc,ierr)
call MPI_COMM_RANK(icomm,iproc,ierr)
do i = 0, nproc-1
 call MPI_BARRIER(icomm,ierr)
 if (iproc == i) then
 write (6,*) "Rank",iproc,"out of",nproc
 end if
end do
call MPI_FINALIZE(ierr)
if (iproc == 0) write(6,*)'End of program.'
 stop
end program mpiexample1

[username@pegasus ~]$ mpif90 -o mpi_example1.x mpi_example1.f90

Fortran 77 source code and compilation:

mpi_example1.f

c===
c Fortran 77 example: MPI Example 1
c===
program mpitest
implicit none
include 'mpif.h'
integer(4) :: ierr
integer(4) :: iproc
integer(4) :: nproc
integer(4) :: icomm
integer(4) :: i
call MPI_INIT(ierr)
icomm = MPI_COMM_WORLD
call MPI_COMM_SIZE(icomm,nproc,ierr)
call MPI_COMM_RANK(icomm,iproc,ierr)
do i = 0, nproc-1
 call MPI_BARRIER(icomm,ierr)
 if (iproc == i) then
 write (6,*) "Rank",iproc,"out of",nproc
 end if
end do
call MPI_FINALIZE(ierr)
if (iproc == 0) write(6,*)'End of program.'
 stop
end

[username@pegasus ~]$ mpif77 -o mpi_example1.x mpi_example1.f

The LSF script to run parallel jobs

This batch script mpi_example1.job instructs LSF to reserve
computational resources for your job. Change the -P flag argument to
your project before running.

mpi_example1.job

#!/bin/sh
#BSUB -n 32
#BSUB -J test
#BSUB -o test.out
#BSUB -e test.err
#BSUB -a openmpi
#BSUB -R "span[ptile=16]"
#BSUB -q parallel
#BSUB -P hpc
mpirun.lsf ./mpi_example1.x

Submit this scriptfile using bsub. For job script information, see
Scheduling Jobs on Pegasus.

[username@pegasus ~]$ bsub -q parallel < mpi_example1.job
Job <6021006> is submitted to queue <parallel>.
...

Software Installation on Pegasus

Pegasus users are free to compile and install software in their own home
directories, by following the software’s source code or local
installation instructions.

To install personal software on the Pegasus cluster, navigate to an interactive
node by submitting an interactive shell job to the Pegasus cluster LSF scheduler.
More on Pegasus interactive jobs.

Source code software installations (“compilations”) can only be
performed in your local directories. Users of Pegasus are not
administrators of the cluster, and therefore cannot install software
with the sudo command (or with package managers like yum /
apt-get). If the software publisher does not provide compilation
instructions, look for non-standard location installation instructions.

In general, local software installation involves:

	confirming pre-requisite software & library availability, versions

	downloading and extracting files

	configuring the installation prefix to a local directory
(compile only)

	compiling the software (compile only)

	updating PATH and creating symbolic links (optional)

Confirm that your software’s pre-requisites are met, either in your
local environment or on Pegasus as a module. You will need to load any
Pegasus modules that are pre-requisites and install locally any other
pre-requisites.

We suggest keeping downloaded source files separate from compiled files
(and any downloaded binary files).

ACS does not install user software. Request cluster software
installations from hpc@ccs.miami.edu

Downloading and extracting files

If necessary, create software directories under your home directory:

[username@pegasus ~]$ mkdir ~/local ~/src

We suggest keeping your compiled software separate from any downloaded
files. Consider keeping downloaded binaries (pre-compiled software)
separate from source files if you will be installing many different
programs. These directories do not need to be named exactly as shown
above.

Navigate to the src directory and download files:

Some programs require configuration and compilation (like autoconf).
Other programs are pre-compiled and simply need to be extracted (like
Firefox). Read and follow all instructions provided for each program.

[username@pegasus ~]$ cd ~/src
[username@pegasus src]$ wget http://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz
[username@pegasus src]$ wget http://ftp.mozilla.org/pub/mozilla.org/firefox/releases/36.0/linux-x86_64/en-GB/firefox-36.0.tar.bz2

Pre-compiled software can be extracted and immediately moved into your
local software directory. We suggest maintaining subdirectories with
application names and version numbers, as shown below.

Extract downloaded contents:

For pre-compiled software, extract and move contents to your local
software directory. For software that must be configured and compiled,
extract and move contents to your source files directory.

Extraction flags:

	tar.gz xvzf eXtract, Verbose, filter through
gZip, using File

	tar.bz2 xvjf …filter through bzip2 (j)

Extract pre-compiled software and move to local software directory:

[username@pegasus src]$ tar xvjf firefox-36.0.tar.bz2
[username@pegasus src]$ mv firefox-36.0 $HOME/local/firefox/36

The newly-extracted Firefox executable should now be located in
~/local/firefox/36/firefox Pre-compiled binaries, skip to
Updating PATH and creating symbolic links.

Extract source code and cd to new directory:

[username@pegasus src]$ tar xvzf autoconf-2.69.tar.gz
[username@pegasus src]$ cd autoconf-2.69
[username@pegasus autoconf-2.69]$

Source code, proceed to *Configuring installation and compiling
software*.

Configuring installation and compilation

We suggest using subdirectories with application names and version
numbers, as shown below. There may be other configuration settings
specific to your software.

Configure with local directory prefix (absolute path):

Configuration files may also be located in the bin (binary)
directory, usually software/bin

[username@pegasus autoconf-2.69]$./configure --prefix=$HOME/local/autoconf/2.69

Make and install the software:

[username@pegasus autoconf-2.69]$ make
[username@pegasus autoconf-2.69]$ make install
...

If there are dependencies or conflicts, investigate the error output and
try to resolve each error individually (install missing dependencies,
check for specific flags suggested by software authors, check your local
variables).

Updating PATH

PATH directories are searched in order. To ensure your compiled or
downloaded software is found and used first, prepend the software
executable location (usually in software/bin or software
directories) to your PATH environment variable. Remember to add
:$PATH to preserve existing environment variables.

Prepend software location to your PATH environment variable:

[username@pegasus ~]$ export PATH=$HOME/local/autoconf/2.69/bin:$PATH

Confirm by checking which software:

[username@pegasus ~]$ which autoconf
~/local/autoconf/2.69/bin/autoconf

Check software version:

Version flags may be software-dependent. Some common flags include
--version, -v, and -V.

[username@pegasus ~]$ autoconf --version
autoconf (GNU Autoconf) 2.69
...

Create symbolic links

To maintain multiple different versions of a program, use soft symbolic
links to differentiate between the installation locations. Make sure the
link and the directory names are distinct (example below). If local
software has been kept in subdirectories with application names and
version numbers, symlinks are not likely to conflict with other files or
directories.

Create a distinctly-named symlink:

This symbolic link should point to the local software executable. The
first argument is the local software executable location
(~/local/firefox/36/firefox). The second argument is the symlink
name and location (~/local/firefox36).

[username@pegasus ~]$ ln -s ~/local/firefox/36/firefox ~/local/firefox36

Append the local location to your PATH environment variable:

Remember to add :$PATH to preserve existing environment variables.

[username@pegasus ~]$ export PATH=$PATH:$HOME/local

Confirm both cluster copy and recently installed software:

The cluster copy of Firefox is firefox. The recently installed local
copy is firefox36 from the symbolic links created above.

[username@pegasus ~]$ which firefox
/usr/bin/firefox
[username@pegasus ~]$ firefox --version
Mozilla Firefox 17.0.10

[username@pegasus ~]$ which firefox36
~/local/firefox36
[username@pegasus ~]$ firefox36 --version
Mozilla Firefox 36.0

Reminder - to launch Firefox, connect to Pegasus via SSH with X11
forwarding enabled.

Persistent PATH

To persist additions to your PATH variable, edit the appropriate profile
configuration file in your home directory. For Bash on Pegasus, this is
.bash_profile.

Update PATH in shell configuration (bash):

Use echo and the append redirect (>>) to update PATH in
.bash_profile.

[username@pegasus ~]$ echo 'export PATH=$HOME/local/autoconf/2.69/bin:$PATH' >> ~/.bash_profile
[username@pegasus ~]$ echo 'export PATH=$PATH:$HOME/local' >> ~/.bash_profile

both in one command (note the newline special character **``n``*
directly in between the commands:*

[username@pegasus ~]$ echo -e 'export PATH=$HOME/local/autoconf/2.69/bin:$PATH\nexport PATH=$PATH:$HOME/local' >> ~/.bash_profile

or edit the file directly:

[username@pegasus ~]$ vi ~/.bash_profile
...
PATH=$PATH:$HOME/bin
PATH=$HOME/local/autoconf/2.69/bin:$PATH
PATH=$PATH:$HOME/local
...

Reload shell configurations (Bash) and check PATH:

Look for the recently added path locations and their order.

[username@pegasus ~]$ source ~/.bash_profile
[username@pegasus ~]$ echo $PATH
/nethome/username/local/autoconf/2.69/bin:/share/opt/python/2.7.3/bin: ... :/share/sys65/root/sbin:/nethome/username/bin:/nethome/username/local

Allinea on Pegasus

Profile and Debug with Allinea Forge, the new name for the unified
Allinea MAP and Allinea DDT tools. See the user guide PDFs below for
Allinea Forge and Performance Reports, available as modules on Pegasus.

Allinea 7.0-Forge guide:

https://www.osc.edu/sites/default/files/documentation/allinea_manual.pdf

Allinea 7.0-PR Guide:

https://www.osc.edu/sites/default/files/documentation/userguide-reports.pdf

Amazon Web Services CLI on Pegasus

Note, IDSC does not administer or manage AWS services.

In order to access your AWS services from the Pegasus cluster:

	load the cluster’s aws-cli module

	
	configure aws with your IAM user account credentials (one-time)

	
	aws user credentials file : ~/.aws/credentials

	aws user configurations file : ~/.aws/config

	check your aws configurations

[username@login4 ~]$ module load aws-cli
[username@login4 ~]$ aws configure
..
[username@login4 ~]$ aws configure list
 Name Value Type Location
 ---- ----- ---- --------
 profile <not set> None None
 access_key ****************44OL shared-credentials-file
 secret_key ****************unuw shared-credentials-file
 region us-east-1 env ['AWS_REGION', 'AWS_DEFAULT_REGION']

Getting Started

	Amazon s3 “Getting started” guide : https://aws.amazon.com/s3/getting-started/

	User guide : https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html

	Pricing : https://aws.amazon.com/s3/pricing/

Amazon s3 is “safe, secure Object storage” with web access, pay-as-you-go subscription

AWS s3 “IAM” User Accounts : https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

(needed to access AWS web services through the CLI from Pegasus)

AWS CLI, User Overview

Note that your AWS IAM web login & password are different from your access key credentials. For help with your IAM web login account, contact your AWS Administrator.

	Get your AWS IAM access keys (from AWS web or your AWS Administrator)

	Configure your AWS access from Pegasus

	Access & use your AWS s3 instance

Getting your AWS IAM access keys (from the web)

Your AWS Administrator may have already provided you with IAM access keys for your Amazon instance. If you need to generate new access keys, log into the AWS web interface. Generating new keys will inactivate any old keys.

https://Your_AWS_instance_ID.signin.aws.amazon.com/console OR https://console.aws.amazon.com/ and enter your instance ID or alias manually.

Reminder, your AWS IAM web login & password are different from your access key credentials. For help with your IAM web login account, contact your AWS Administrator.

	
	Log into your AWS Management Console, with your IAM web login & password

	
	If you forgot your IAM web login, contact the AWS administrator that provided you with your IAM user name.

	”IAM users, only your administrator can reset your password.”

	More on IAM account logins : https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_sign-in.html

	
	From your IAM account drop-down menu, choose “My security credentials”

	
	If needed, update your password

	
	Under the “Access keys” heading, create & download your access key credentials credentials.csv

	
	‘credentials.csv’ contains both your Access Key & your Secret Access Key

	“If you lose or forget your secret key, you cannot retrieve it. Instead, create a new access key and make the old key inactive.”

	More about access keys : http://docs.aws.amazon.com/console/iam/self-accesskeys

Configuring your AWS access (cli)

Have your IAM access key credentials, from ‘credentials.csv’ (from AWS web or your AWS Administrator).

AWS CLI quickstart : https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config

	
	On the Pegasus cluster,

	
	Load the cluster “aws-cli” module

	(optional) Check the module’s default settings

	Run the command “aws configure”

	
	Enter your AWS IAM credentials (from ‘credentials.csv’)

	
	These settings will save to your home directory

	More about aws configuration files : https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

Examples,

[username@login4 ~]$ module load aws-cli
[username@login4 ~]$ which aws
/share/apps/c7/aws-cli/bin/aws

[username@login4 ~]$ module show aws-cli
..
Set environment variables
setenv AWS_DEFAULT_REGION "us-east-1"

—> The default retry mode for AWS CLI version 2 is “standard”

These module settings will override user “aws configure” settings. You can override module settings by using aws command-line options.

Using AWS s3 buckets from the cli

	
	Create a bucket

	
	bucket names must be globally unique (e.g. two different AWS users can not have the same bucket name)

	bucket names cannot contain spaces

	More on bucket naming requirements : https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-s3-bucket-naming-requirements.html

	
	List your s3 bucket contents

	
	buckets are collections of objects

	“objects” behave like files

	“objects/” (with a trailing slash) behave like folders

	
	Download objects from AWS s3 buckets with cp

	
	specify directories, or use current local

	use the ‘–recursive’ flag to download all objects

	
	Upload files to an AWS s3 bucket with cp

	
	specify AWS bucket paths

	use the ‘–recursive’ flag to upload all objects

	
	Delete objects from AWS s3 buckets with rm

	
	list & test with ‘–dryrun’ flag

	then remove with rm

	
	Sync between your local directory and an AWS s3 bucket with sync

	
	recursive

	copies changes & new files only

	doesn’t delete missing files

More on using s3 : https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3.html

AWS s3 command examples : https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html

AWS s3 CLI reference : https://docs.aws.amazon.com/cli/latest/reference/s3/

Create (make) an AWS s3 bucket

[username@login4 ~]$ aws s3 mb s3://idsc-acs-test-bucket2
make_bucket: idsc-acs-test-bucket2

List all user owned AWS s3 buckets

[username@login4 ~]$ aws s3 ls
2021-09-01 11:57:25 idsc-acs-test-bucket
2021-09-01 13:11:39 idsc-acs-test-bucket2

List AWS s3 bucket contents

[username@login4 ~]$ aws s3 ls s3://idsc-acs-test-bucket
 PRE testfolder/
2021-09-01 12:02:29 160 aws_bucket_test.txt

List AWS s3 “folder” (object/) contents (include trailing slash)

[username@login4 awstests]$ aws s3 ls s3://idsc-acs-test-bucket/testfolder/
2021-09-01 16:04:19 20 testfile1.test
2021-09-01 16:04:19 20 testfile2.test
2021-09-01 16:04:19 20 testfile3.test

Download an object from an AWS s3 bucket (to your current local directory)

[username@login4 ~]$ aws s3 cp s3://idsc-acs-test-bucket/aws_bucket_test.txt .
download: s3://idsc-acs-test-bucket/aws_bucket_test.txt to ./aws_bucket_test.txt

Download an object from an AWS s3 bucket (to a specified local directory)

[username@login4 ~]$ aws s3 cp s3://idsc-acs-test-bucket/aws_bucket_test.txt ~/aws-downloads/.
download: s3://idsc-acs-test-bucket/aws_bucket_test.txt to /nethome/username/aws-downloads/aws_bucket_test.txt

Download all objects from an AWS “folder” (to your current local directory, recursive)::

[username@login4 awstests]$ aws s3 cp s3://idsc-acs-test-bucket/testfolder testfolder --recursive
download: s3://idsc-acs-test-bucket/testfolder/testfile1.test to testfolder/testfile1.test
download: s3://idsc-acs-test-bucket/testfolder/testfile2.test to testfolder/testfile2.test
download: s3://idsc-acs-test-bucket/testfolder/testfile5.test to testfolder/testfile3.test

Upload a file to an AWS s3 bucket

[username@login4 ~]$ aws s3 cp aws_bucket_cli_upload_test.txt s3://idsc-acs-test-bucket/
upload: ./aws_bucket_cli_upload_test.txt to s3://idsc-acs-test-bucket/aws_bucket_cli_upload_test.txt

[username@login4 ~]$ aws s3 ls s3://idsc-acs-test-bucket
2021-09-01 12:41:47 94 aws_bucket_cli_upload_test.txt
2021-09-01 12:02:29 160 aws_bucket_test.txt

Upload multiple files to an AWS s3 bucket (recursive)

[username@login4 ~]$ aws s3 cp . s3://idsc-acs-test-bucket/ --recursive
upload: ./another_test.txt to s3://idsc-acs-test-bucket/another_test
upload: ./testimage2.jpg to s3://idsc-acs-test-bucket/testimage2.jpg
upload: ./testimage.jpg to s3://idsc-acs-test-bucket/testimage.jpg
upload: ./aws_bucket_cli_upload_test.txt to s3://idsc-acs-test-bucket/aws_bucket_cli_upload_test.txt
upload: ./aws_bucket_test.txt to s3://idsc-acs-test-bucket/aws_bucket_test.txt

Upload multiple files to an AWS s3 bucket, with filters (examples by file extension)

upload (copy to AWS) ONLY files with ‘.txt’ extension

[username@login4 ~]$ aws s3 cp . s3://idsc-acs-test-bucket/ --recursive --exclude "*" --include "*.txt"
upload: ./aws_bucket_test.txt to s3://idsc-acs-test-bucket/aws_bucket_test.txt
upload: ./aws_bucket_cli_upload_test.txt to s3://idsc-acs-test-bucket/aws_bucket_cli_upload_test.txt

upload ONLY files with ‘.jpg’ extension

[username@login4 ~]$ aws s3 cp . s3://idsc-acs-test-bucket/ --recursive --exclude "*" --include "*.jpg"
upload: ./testimage.jpg to s3://idsc-acs-test-bucket/testimage.jpg
upload: ./testimage2.jpg to s3://idsc-acs-test-bucket/testimage2.jpg

upload all files EXCEPT those with ‘.txt’ extension

[username@login4 ~]$ aws s3 cp . s3://idsc-acs-test-bucket/ --recursive --exclude "*.txt"
upload: ./testimage.jpg to s3://idsc-acs-test-bucket/testimage.jpg
upload: ./testimage2.jpg to s3://idsc-acs-test-bucket/testimage2.jpg
upload: ./another_test to s3://idsc-acs-test-bucket/another_test

list local directory contents

[username@login4 ~]$ ls -lah
..
-rw-r--r-- 1 username hpc 0 Sep 10 13:15 another_test
-rw-r--r-- 1 username hpc 94 Sep 10 13:15 aws_bucket_cli_upload_test.txt
-rw-r--r-- 1 username hpc 160 Sep 10 13:15 aws_bucket_test.txt
-rw-r--r-- 1 username hpc 87 Sep 10 13:32 testimage2.jpg
-rw-r--r-- 1 username hpc 16K Sep 10 13:33 testimage.jpg

Delete an object from an AWS s3 bucket (list, test with dryrun, then remove)

[username@login4 ~]$ aws s3 ls s3://idsc-acs-test-bucket --human-readable
2021-09-01 13:31:31 4.4 GiB BIG_FILE.iso
2021-09-01 13:29:26 0 Bytes another_test
2021-09-01 13:03:40 0 Bytes another_test.txt
2021-09-01 13:29:26 94 Bytes aws_bucket_cli_upload_test.txt
2021-09-01 13:29:26 160 Bytes aws_bucket_test.txt
2021-09-01 13:29:26 16.0 KiB testimage.jpg
2021-09-01 13:29:26 87 Bytes testimage2.jpg

[username@login4 ~]$ aws s3 rm --dryrun s3://idsc-acs-test-bucket/BIG_FILE.iso
(dryrun) delete: s3://idsc-acs-test-bucket/BIG_FILE.iso

[username@login4 ~]$ aws s3 rm s3://idsc-acs-test-bucket/BIG_FILE.iso
delete: s3://idsc-acs-test-bucket/BIG_FILE.iso

Sync local directory “testfolder” with AWS s3 object “testfolder/” (creates if doesn’t exist)

[username@login4 ~]$ aws s3 sync testfolder s3://idsc-acs-test-bucket/testfolder
upload: testfolder/testfile1.test to s3://idsc-acs-test-bucket/testfolder/testfile1.test
upload: testfolder/testfile2.test to s3://idsc-acs-test-bucket/testfolder/testfile2.test
upload: testfolder/testfile3.test to s3://idsc-acs-test-bucket/testfolder/testfile3.test

Add another file, sync again, then list aws s3 “testfolder/” contents

[username@login4 ~]$ echo "this is my new test file" > testfolder/testfileNEW.test
[username@login4 ~]$ aws s3 sync testfolder s3://idsc-acs-test-bucket/testfolder
upload: testfolder/testfileNEW.test to s3://idsc-acs-test-bucket/testfolder/testfileNEW.test

[username@login4 ~]$ aws s3 ls s3://idsc-acs-test-bucket/testfolder/
2021-09-01 17:16:10 20 testfile1.test
2021-09-01 16:04:19 20 testfile2.test
2021-09-01 16:04:19 20 testfile3.test
2021-09-01 17:16:10 25 testfileNEW.test

Get help with AWS s3 commands

aws s3 help
aws s3 ls help
aws s3 cp help

AWS s3 Include and Exclude filters

The following pattern symbols are supported

	* Matches everything

	? Matches any single character

	[sequence] Matches any character in sequence

	[!sequence] Matches any character not in sequence

Filters that appear later in the command take precedence. Put --exclude filters first, then add --include filters after to re-include specifics. See command examples above.

More on filters : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/index.html#use-of-exclude-and-include-filters

Matlab on Pegasus

Interactive Mode

There are several ways to run MATLAB commands/jobs interactively, with
or without the graphical interface.

Graphical Interface Mode

To run MATLAB using graphical interface mode, connect with display
forwarding. For more information about display forwarding, see
Forwarding the Display.

Load and launch MATLAB on one of the interactive compute nodes as shown
below. If you belong to more than one project, specify the projectID
as well.

[username@pegasus ~]$ module load matlab
[username@pegasus ~]$ bsub -Is -q interactive -XF -P projectID matlab

Once the interactive MATLAB graphical desktop is loaded, you can then
run MATLAB commands or scripts in the MATLAB command window. The results
will be shown in the MATLAB command window and the figure/plot will be
displayed in new graphical windows on your computer. See examples below.

>> x = rand(1,100);
>> plot(x);
>>
>> x = [0: pi/10: pi];
>> y = sin(x);
>> z = cos(x);
>> figure;
>> plot(x, y);
>> hold('on');
>> plot(x, z, '--');

Graphical Interactive Mode with no graphical desktop window

Running MATLAB in a full graphical mode may get slow depending on the
network load. Running it with -nodesktop option will use your
current terminal window (in Linux/Unix) as a desktop, while allowing you
still to use graphics for figures and editor.

[username@pegasus ~]$ module load matlab
[username@pegasus ~]$ bsub -Is -q interactive -XF -P projectID matlab -nodesktop

Non-Graphical interactive Mode

If your MATLAB commands/jobs do not need to show graphics such as
figures and plots, or to use a built-in script editor, run the MATLAB in
the non-graphical interactive mode with -nodisplay.

Open a regular ssh connection to Pegasus.

[username@pegasus ~]$ module load matlab
[username@pegasus ~]$ bsub -Is -q interactive -P projectID matlab -nodisplay

This will bring up the MATLAB command window:

 < M A T L A B (R) >
 Copyright 1984-2018 The MathWorks, Inc.
 R2018a (9.4.0.813654) 64-bit (glnxa64)
 February 23, 2018

No window system found. Java option 'Desktop' ignored.

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.
>>

To exit, type exit or quit. Again, remember to import the
prepared LSF configuration file mentioned above if you want to use
MATLAB parallel computing.

Batch Processing

For off-line non-interactive computations, submit the MATLAB script to
the LSF scheduler using the bsub command. For more information about
job scheduling, see Scheduling Jobs. Example
single-processor job submission:

[username@pegasus ~]@ bsub < example.job

example.job

#BSUB -J example
#BSUB -q general
#BSUB -P projectID
#BSUB -n 1
#BSUB -o example.o%J
#BSUB -e example.e%J
matlab -nodisplay -r my_script

In this example, “my_script” corresponds to “my_script.m” in the current
working directory.

After the job is finished, the results will be saved in the output file
named “example.o######” where “######” is a jobID number
assigned by LSF when you submit your job.

Parallel Computations

MATLAB’s Parallel Computing Toolbox™ and Distributed Computing Server™ let users run
MATLAB programs and Simulink models on multi-core and/or multi-node computer clusters.
The Parallel Computing Toolbox, a toolbox of parallel-enabled functions
that abstracts away the complexity of parallel programming, enables
the user to write code that scales across multiple compute cores and/or processors
without needing any modification. Furthermore, the Parallel Computing
Toolbox defines the jobs and their distribution to MATLAB computational engines or workers.
The MATLAB Distributed Computing Server is responsible for the execution of the
jobs, and interfaces with resource schedulers such as LSF, effectively mapping each MATLAB worker
to the available cores of multicore standalone/cluster computers.

Single-node parallel MATLAB jobs (up to 16 cpus)

The MATLAB Distributed Computing Server™ can be used to
provide up to 16 MATLAB computational engines or workers on a single node
on Pegasus. You may get up to 15 workers on the general queue, and
up to 16 on the parallel one. For more information
about queue and parallel resource distribution requirements, see
Scheduling Jobs.

Documentation from MATLAB outlines strategies and tools from the
Parallel Computing Toolbox that help adapt your script for
multi-processor calculations. One of the tools available is a parallel
construct of the ubiquitous for loop, which is named the parfor loop,
and the syntax for its use is as shown in the script right below. Essentially,
what would have been a set of sequential operations on a single processor
can now be a set of parallel operations over a parallel pool (parpool)
of 16 MATLAB workers.

%==
% dct_example.m
% Distributed Computing Toolbox (DCT)
% Example: Print datestamp within a parallel "parfor" loop
%==
%% Create a parallel pool of workers on the current working node:
parpool('local',16);
% The test loop size
N = 40;
tstart = tic();
parfor(ix=1:N)
 ixstamp = sprintf('Iteration %d at %s\n', ix, datestr(now));
 disp(ixstamp);
 pause(1);
end
cputime=toc(tstart);
toctime= sprintf('Time used is %d seconds', cputime);
disp(toctime)
%% delete current parallel pool:
delete(gcp)

Multi-node parallel MATLAB jobs (16-32 cpus)

MATLAB licenses the MATLAB Distributed Computer Engine™ for
running multi-processor jobs that involve 16+ cpus and more
than a single node. We have up to 32 licenses
available on Pegasus, and this makes it possible to run jobs
on up to 32 cores. The first thing that needs to be done is to
make sure that Pegasus, running LSF, is discoverable to MATLAB.
To do this, the user has the MATLAB client use the cluster
configuration file /share/opt/MATLAB/etc/LSF1.settings to create
a cluster profile (for themself). This is done as follows:

[username@pegasus ~]$ matlab -nodisplay -r "parallel.importProfile('/share/opt/MATLAB/etc/LSF1.settings')"

[username@pegasus ~] >> exit

[username@pegasus ~]$ reset

This command only needs to be run once. It imports the cluster profile
named ‘LSF1’ that is configured to use up to 32 MatlabWorkers and to
submit MATLAB jobs to the parallel Pegasus queue. This profile does
not have a projectID associated with the job, and you may need to
coordinate the project name for the LSF job submission. This can be done
by running the following script conf_lsf1_project_id.m (only once!)
during your matlab session:

%% conf_lsf1_project_id.m
%% Verify that LSF1 profile exists, and indicate the current default profile:
[allProfiles,defaultProfile] = parallel.clusterProfiles()
%% Define the current cluster object using LSF1 profile
myCluster=parcluster('LSF1')
%% View current submit arguments:
get(myCluster,'SubmitArguments')
%% Set new submit arguments, change projectID below to your current valid project:
set(myCluster,'SubmitArguments','-q general -P projectID')
%% Save the cluster profile:
saveProfile(myCluster)
%% Set the 'LSF1' to be used as a default cluster profile instead of a 'local'
parallel.defaultClusterProfile('LSF1');
%% Verify the current profiles and the default:
[allProfiles,defaultProfile] = parallel.clusterProfiles()

The multi-node parallel jobs must be submitted to the **parallel* queue with the
appropriate ptile resource distribution.* For more information about
queue and resource distribution requirements, see Scheduling
Jobs.

The above script also reviews your current settings of the cluster
profiles. You can now use the cluster profile for distributed
calculations on up to 32 CPUs, for example, to create a pool of
MatlabWorkers for a parfor loop:

%===
% dce_example.m
% Distributed Computing Engine (DCE)
% Example: Print datestamp within a parallel "parfor" loop
%===
myCluster=parcluster('LSF1')
% Maximum number of MatlabWorkers is 32 (number of MATLAB DCE Licenses)
parpool(myCluster,32);
% The test loop size
N = 40;
tstart = tic();
parfor(ix=1:N)
 ixstamp = sprintf('Iteration %d at %s\n', ix, datestr(now));
 disp(ixstamp);
 pause(1);
end
cputime=toc(tstart);
toctime= sprintf('Time used is %d seconds', cputime);
disp(toctime)
delete(gcp)

Please see MATLAB documentation on more ways to parallelize your code.

There may be other people running Distributed Computing Engine and thus
using several licenses. Please check the license count as following (all
in a single line):

[username@pegasus ~]$ /share/opt/MATLAB/R2013a/etc/lmstat -S MLM -c /share/opt/MATLAB/R2013a/licenses/network.lic

Find the information about numbers of licenses used for the “Users of
MATLAB_Distrib_Comp_Engine”, “Users of MATLAB”, and “Users of
Distrib_Computing_Toolbox”.

Note on Matlab cluster configurations

After importing the new cluster profile, it will remain in your
available cluster profiles. Validate using the
parallel.clusterProfiles() function. You can create, change, and
save profiles using SaveProfile and SaveAsProfile methods on a
cluster object. In the examples, “myCluster” is the cluster object. You
can also create, import, export, delete, and modify the profiles through
the “Cluster Profile Manager” accessible via MATLAB menu in a graphical
interface. It is accessed from the “HOME” tab in the GUI desktop window
under “ENVIRONMENT” section: ->“Parallel”->“Manage Cluster Profiles”

[image: Cluster Profile Manager]

Cluster Profile Manager

You can also create your own LSF configuration from the Cluster Profile
Manager. Choose “Add”->“Custom”->“3RD PARTY CLUSTER PROFILE”->“LSF” as
shown below:

[image: Cluster Profile Manager: new LSF cluster]

Cluster Profile Manager: new LSF cluster

… and configure to your needs:

[image: New LSF cluster in Matlab]

New LSF cluster in Matlab

Perl on Pegasus

Users are free to compile and install Perl modules in their own home
directories. Most Perl modules can be installed into a local library
with CPAN and cpanminus. If you need a specific version, we
suggest specifying the version or downloading, extracting, and
installing using Makefile.PL.

Configuring a Local Library

Local libraries can be configured during initial CPAN configuration and
by editing shell configuration files after installing the local::lib
module. By default, local::lib installs here: ~/perl5.

Configure with CPAN:

During initial CPAN configuration, answer yes to automatic
configuration, local::lib to approach, and yes to append
locations to your shell profile (Bash). Quit CPAN and source your shell
configuration before running cpan again.

[username@pegasus ~]$ cpan
...
Would you like to configure as much as possible automatically? [yes] yes
...
Warning: You do not have write permission for Perl library directories.
...
What approach do you want? (Choose 'local::lib', 'sudo' or 'manual')
 [local::lib] local::lib
...
local::lib is installed. You must now add the following environment variables
to your shell configuration files (or registry, if you are on Windows) and
then restart your command line shell and CPAN before installing modules:

PATH="/nethome/username/perl5/bin${PATH+:}${PATH}"; export PATH;
PERL5LIB="/nethome/username/perl5/lib/perl5${PERL5LIB+:}${PERL5LIB}"; export PERL5LIB;
PERL_LOCAL_LIB_ROOT="/nethome/username/perl5${PERL_LOCAL_LIB_ROOT+:}${PERL_LOCAL_LIB_ROOT}"; export PERL_LOCAL_LIB_ROOT;
PERL_MB_OPT="--install_base \"/nethome/username/perl5\""; export PERL_MB_OPT;
PERL_MM_OPT="INSTALL_BASE=/nethome/username/perl5"; export PERL_MM_OPT;

Would you like me to append that to /nethome/username/.bashrc now? [yes] yes
...
cpan[1]> quit
...
*** Remember to restart your shell before running cpan again ***
[username@pegasus ~]$ source ~/.bashrc

Configure after local::lib module installation:

If CPAN has already been configured, ensure local::lib is installed
and the necessary environment variables have been added to your shell
configuration files. Source your shell configuration before running
cpan again.

[username@pegasus ~]$ cpan local::lib
Loading internal null logger. Install Log::Log4perl for logging messages
...
local::lib is up to date (2.000018).
[username@pegasus ~]$ echo 'eval "$(perl -I$HOME/perl5/lib/perl5 -Mlocal::lib)"' >> perl -~/.bashrc
[username@pegasus ~]$ source ~/.bashrc
...

Update CPAN:

Update CPAN, if necessary. This can be done from the Pegasus prompt or
the CPAN prompt.

[username@pegasus ~]$ cpan CPAN
or
cpan[1]> install CPAN
...
Appending installation info to /nethome/username/perl5/lib/perl5/x86_64-linux-thread-multi/perllocal.pod
 ANDK/CPAN-2.10.tar.gz
 /usr/bin/make install -- OK

cpan[2]> reload cpan

Confirm local library location:

Look for ~/perl5/... directories in $PATH and @INC.

[username@pegasus ~]$ echo $PATH
/share/opt/perl/5.18.1/bin:/nethome/username/perl5/bin:/share/lsf/9.1/linux2.6-glibc2.3-x86_64/etc:...
[username@pegasus ~]$ perl -e 'print "@INC"'
/nethome/username/perl5/lib/perl5/5.18.1/x86_64-linux-thread-multi /nethome/username/perl5/lib/perl5/5.18.1 ...

Installing Perl Modules

Once a local library has been installed and configured, CPAN modules
will install to the local directory (default ~/perl5). The format
for installing Perl modules with CPAN or cpanminus is
Module::Name.

Install with CPAN:

Install from the Pegasus prompt or the CPAN prompt. Run cpan -h or
perldoc cpan for more options.

[username@pegasus ~]$ cpan App::cpanminus
Loading internal null logger. Install Log::Log4perl for logging messages
Reading '/nethome/username/.cpan/Metadata'
...
or
[username@pegasus ~]$ cpan
cpan[1]> install App::cpanminus
Reading '/nethome/username/.cpan/Metadata'
...

To install a specific module version with cpan, provide the full
distribution path.

[username@pegasus ~]$ cpan MIYAGAWA/App-cpanminus-1.7040.tar.gz

Install with cpanminus:

cpanminus is a CPAN module installation tool that will use your local
library, if configured. Install from the Pegasus prompt with
cpanm Module::Name. Run cpanm -h or perldoc cpanm for
more options.

[username@pegasus ~]$ cpanm IO::All
--> Working on IO::All
Fetching http://www.cpan.org/authors/id/I/IN/INGY/IO-All-0.86.tar.gz ... OK
Configuring IO-All-0.86 ... OK
Building and testing IO-All-0.86 ... OK
Successfully installed IO-All-0.86
1 distribution installed

To install a specific module version with cpanm, provide either the
full distribution path, the URL, or the path to a local tarball.

[username@pegasus ~]$ cpanm MIYAGAWA/App-cpanminus-1.7040.tar.gz
or
[username@pegasus ~]$ cpanm http://search.cpan.org/CPAN/authors/id/M/MI/MIYAGAWA/App-cpanminus-1.7040.tar.gz
or
[username@pegasus ~]$ cpanm ~/App-cpanminus-1.7040.tar.gz

Deactivating Local Library Environment Variables

To remove all directories added to search paths by local::lib in the
current shell’s environment, use the --deactivate-all flag. Note
that environment variables will be re-enabled in any sub-shells when
using .bashrc to initialize local::lib.

[username@pegasus ~]$ eval $(perl -Mlocal::lib=--deactivate-all)
[username@pegasus ~]$ echo $PATH
/share/opt/perl/5.18.1/bin:...
[username@pegasus ~]$ perl -e 'print "@INC"'
/share/opt/perl/5.18.1/lib/site_perl/5.18.1/x86_64-linux-thread-multi ...

Source your shell configuration to re-enable the local library:

[username@pegasus ~]$ source ~/.bashrc
...
[username@pegasus ~]$ echo $PATH
/nethome/username/perl5/bin:/share/lsf/9.1/linux2.6-glibc2.3-x86_64/etc:...
[username@pegasus ~]$ perl -e 'print "@INC"'
/nethome/username/perl5/lib/perl5/5.18.1/x86_64-linux-thread-multi /nethome/username/perl5/lib/perl5/5.18.1 /nethome/username/perl5/lib/perl5/x86_64-linux-thread-multi /nethome/username/perl5/lib/perl5 ...

Python on Pegasus

Users are free to compile and install Python modules in their own home
directories on Pegasus. Most Python modules can be installed with the
--user flag using PIP, easy_install, or the setup.py file provided
by the package. If you need a specific version of a Python module, we
suggest using PIP with a direct link or downloading, extracting, and
installing using setup.py. If you need to maintain multiple versions,
see Python Virtual Environments (below).

The --user flag will install Python 2.7 modules here:
~/.local/lib/python2.7/site-packages Note the default location
~/.local is a hidden directory. If the Python module includes
executable programs, they will usually be installed into
~/.local/bin.

To specify a different location, use
--prefix=$HOME/local/python2mods (or another path). The above prefix
flag example will install Python 2.7 modules here:
~/local/python2mods/lib/python2.7/site-packages

Loading and Switching Python Modules

Confirm Python is loaded:

[username@pegasus ~]$ module list
Currently Loaded Modulefiles:
 1) perl/5.18.1 3) gcc/4.4.7(default)
 2) python/2.7.3(default) 4) share-rpms65

Switch Python modules:

[username@pegasus ~]$ module switch python/3.3.1
$ module list
Currently Loaded Modulefiles:
 1) perl/5.18.1 3) share-rpms65
 2) gcc/4.4.7(default) 4) python/3.3.1

Installing Python Modules with Package Managers

Install using PIP with --user:

[username@pegasus ~]$ pip install --user munkres
or install a specific version:
[username@pegasus ~]$ pip install --user munkres==1.0.7

Install using easy_install with --user:

[username@pegasus ~]$ easy_install --user munkres

Installing Downloaded Python Modules

Install using PIP with --user:

[username@pegasus ~]$ pip install --user https://pypi.python.org/packages/source/m/munkres/munkres-1.0.7.tar.gz
Downloading/unpacking https://pypi.python.org/packages/source/m/munkres/munkres-1.0.7.tar.gz
 Downloading munkres-1.0.7.tar.gz
 Running setup.py egg_info for package from https://pypi.python.org/packages/source/m/munkres/munkres-1.0.7.tar.gz

Cleaning up...

Install using setup.py with --user:

[username@pegasus ~]$ wget https://pypi.python.org/packages/source/m/munkres/munkres-1.0.7.tar.gz --no-check-certificate
[username@pegasus ~]$ tar xvzf munkres-1.0.7.tar.gz
[username@pegasus ~]$ cd munkres-1.0.7
[username@pegasus munkres-1.0.7]$ python setup.py --user install

Checking Module Versions

Launch Python and confirm module installation:

[username@pegasus ~]$ python
...
>>> import munkres
>>> print munkres.__version__
1.0.7
>>> CTRL-D (to exit Python)

Python Virtual Environments on Pegasus

Users can create their own Python virtual environments to maintain
different module versions for different projects. Virtualenv is
available on Pegasus for Python 2.7.3. By default, virtualenv does
not include packages that are installed globally. To give a virtual
environment access to the global site packages, use the
--system-site-packages flag.

Creating Virtual Environments

These example directories do not need to be named exactly as shown.

Create a project folder, cd to the new folder (optional), and create a
``virtualenv``:

[username@pegasus ~]$ mkdir ~/python2
[username@pegasus ~]$ cd ~/python2
[username@pegasus python2]$ virtualenv ~/python2/test1
PYTHONHOME is set. You *must* activate the virtualenv before using it
New python executable in test1/bin/python
Installing setuptools, pip...done.

Create a ``virtualenv`` with access to global packages:

[username@pegasus python2]$ virtualenv --system-site-packages test2

Activating Virtual Environments

Activate the virtual environment with the source command and
relative or absolute path/to/env`/bin/activate`. The
environment name will precede the prompt.

[username@pegasus ~]$ source ~/python2/test1/bin/activate
(test1)[username@pegasus ~]$ which python
~/python2/test1/bin/python

Installing Python modules in Virtual Environments

Once the virtual environment is active, install Python modules normally
with PIP, easy_install, or setup.py. Any package installed normally will
be placed into that virtual environment folder and isolated from the
global Python installation. Note that using --user or
--prefix=... flags during module installation will place modules in
those specified directories, NOT your currently active Python
virtual environment.

(test1)[username@pegasus ~]$ pip install munkres

Deactivating Virtual Environments

(test1)[username@pegasus ~]$ deactivate
[username@pegasus ~]$

Comparing two Python Virtual Environments

PIP can be used to save a list of all packages and versions in the
current environment (use freeze). Compare using sdiff to see
which packages are different.

List the current environment, deactivate, then list the global Python
environment:

(test1)[username@pegasus ~]$ pip freeze > test1.txt
(test1)[username@pegasus ~]$ deactivate
[username@pegasus ~]$ pip freeze > p2.txt

Compare the two outputs using ``sdiff``:

[username@pegasus ~]$ sdiff p2.txt test1.txt
...
matplotlib==1.2.1 <
misopy==0.5.0 | munkres==1.0.7
...
[username@pegasus ~]$

As seen above, the test1 environment has munkres installed (and no
other global Python packages).

Recreating Python Virtual Environments

To recreate a Python virtual environment, use the r flag and the the
saved list:

(test2)[username@pegasus ~]$ pip install -r test1.txt
Installing collected packages: munkres
 Running setup.py install for munkres
...
Successfully installed munkres
Cleaning up...
(test2)[username@pegasus ~]$

Python virtual environment wrapper

Users can install virtualenvwrapper in their own home directories to
facilitate working with Python virtual environments. Once installed and
configured, virtualenvwrapper can be used to create new virtual
environments and to switch between your virtual environments (switching
will deactivate the current environment). Virtualenvwrapper reads
existing environments located in the WORKON_HOME directory.

Install a local copy of virtualenv with --user:

Recall that --user installs Python 2.7 modules in
~/.local/lib/python2.7/site-packages To specify a different
location, use --prefix=$HOME/local/python2mods (or another path).

[username@pegasus ~]$ pip install --user virtualenvwrapper
or
[username@pegasus ~]$ easy_install --user --always-copy virtualenvwrapper

Set virtual environment home directory and source:

WORKON_HOME should be the parent directory of your existing Python
virtual environments (or another directory of your choosing). New Python
virtual environments created with virtualenv will be stored
according to this path. Set source to virtualenvwrapper.sh in the
same location specified during installation.

[username@pegasus ~]$ export WORKON_HOME=$HOME/python2
[username@pegasus ~]$ source ~/.local/bin/virtualenvwrapper.sh

Create a virtual environment using virtualenvwrapper:

This will also activate the newly-created virtual environment.

[username@pegasus ~]$ mkvirtualenv test3
PYTHONHOME is set. You *must* activate the virtualenv before using it
New python executable in test3/bin/python
Installing setuptools, pip...done.
(test3)[username@pegasus ~]$

Activate or switch to a virtual environment:

(test3)[username@pegasus ~]$ workon test1
(test1)[username@pegasus ~]$

Deactivate the virtual environment:

(test1)[username@pegasus ~]$ deactivate
[username@pegasus ~]$

R on Pegasus

R is available on Pegasus through the module command. You can load
R into your environment by typing the following on the commandline:

[username@pegasus ~]$ module load R

This loads the default version of R, currently 4.1.0. To load a specific
version of R, say, 3.6.3, you can type the following:

[username@pegasus ~]$ module load R/3.6.3

To see a list of available software, including R versions, use the command
module avail. For more information about software available on Pegasus,
see Software on the Pegasus Cluster.

Batch R

To run a batch R file on the compute nodes on Pegasus, submit the file to LSF
with R CMD BATCH filename.R, with filename being the name of your R script.
This can be done using the following (two) commands:

[username@pegasus ~]$ module load R/4.1.0
[username@pegasus ~]$ bsub -q general -P projectID R CMD BATCH filename.R
Job is submitted to <projectID> project.
Job <6101046> is submitted to queue <general>.

Batch jobs can also be submitted to LSF with script files, such as
example.job shown below.

example.job
#!/bin/bash
#BSUB -J R_job # name of your job
#BSUB -e filename.e%J # file that will contain any error messages
#BSUB -o filename.o%J # file that will contain standard output
#BSUB -R "span[hosts=1]" # request run script on one node
#BSUB -q general # request run on general queue
#BSUB -n 1 # request 1 core
#BSUB -W 2 # request 2 minutes of runtime
#BSUB -P projectID # your projectID
R CMD BATCH filename.R # R command and your batch R file

When using such a script file, the batch job can be submitted by typing the
following on the commandline

[username@pegasus ~]$ bsub < example.job

Interactive R

R can also be run interactively by requesting resources on
the interactive queue. This can be done by first loading R into your
environment

[username@pegasus ~]$ module load R/4.1.0

and then requesting an interactive R session by typing on the commandline

[username@pegasus ~]$ bsub -Is -q interactive R

or

[username@pegasus ~]$ bsub -Is -P ProjectID R

making sure to replace ProjectID with the actual name of your project.

Installing additional R packages

To install additional R packages, you’ll need to confirm that your package’s
pre-requisites are met by inspecting and modifying your local environment as needed
or by loading the appropriate modules. See Pegasus Cluster
Software Installation for help with complex requirements.

From the R prompt, install any R package to your personal R library with
the standard install.package() R command. For instance, to install the
doParallel package, a parallel backend for the foreach
function, one would type the following on the commandline in an interactive
session of R.

> install.packages("doParallel", repos="http://R-Forge.R-project.org")

The result would be as follows:

Installing package into ‘/nethome/CaneID/R/x86_64-pc-linux-gnu-library/4.1’
(as ‘lib’ is unspecified)
trying URL 'http://R-Forge.R-project.org/src/contrib/doParallel_1.0.14.tar.gz'
Content type 'application/x-gzip' length 173692 bytes (169 KB)
==
downloaded 169 KB

* installing *source* package ‘doParallel’ ...
** using staged installation
** R
** demo
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (doParallel)

The downloaded source packages are in
 ‘/tmp/RtmpnBwmdD/downloaded_packages’
>

Contact IDSC ACS to review any core library
pre-requisites and dependencies, for cluster-wide installation.

A Sample R script

Below is a sample R script which creates a graphical output file after it has been
run.

example1.R

 # create graphical output file
pdf("example1.pdf")

Define two vectors v1 and v2
v1 <- c(1, 4, 7, 8, 10, 12)
v2 <- c(2, 8, 9, 10, 11, 15)

Creat some graphs
hist(v1)
hist(v2)
pie(v1)
barplot(v2)

close the file
dev.off()

Such a script can be run as a batch job. After the script has run, the
graphical output file can be transferred to a local computer using
FileZilla or scp, in order to be viewed.

RStudio on Pegasus

Rstudio is available as a software module on Pegasus utilizing R version 4.1.0. RStudio graphical jobs can be submitted to
the LSF scheduler via the interactive queue.

Forwarding X11

In order to launch an RStudio interactive job, you will need to login to Pegasus with X11 forwarding enabled.

You will also need to install an X11 server on your local machine such as Xming for Windows or XQuartz for Mac.

Please see the following guide on how to achieve this:
https://acs-docs.readthedocs.io/services/1-access.html?highlight=x11#connect-with-x11-forwarding

Loading the Module

The RStudio module is dependent on the gcc/8.3.0 and R/4.1.0 software modules. These will come pre-loaded once the RStudio module has been loaded

[nra20@login4 ~]$ module load rstudio
[nra20@login4 ~]$ module list
 Currently Loaded Modulefiles:
 1) perl/5.18.1(default) 3) gcc/8.3.0
 2) R/4.1.0 4) rstudio/2022.05.999

First Time configurations

If this is the first time you are using the RStudio module you will need to configure the rendering engine to run in software mode by editing /nethome/caneid/.config/RStudio/desktop.ini

[nra20@login4 ~]$ vi /nethome/nra20/.config/RStudio/desktop.ini

Add the following line under [General]

desktop.renderingEngine=software

Launching RStudio jobs through LSF

To launch RStudio jobs to the LSF scheduler, you will need to pass the X11 -XF parameter and submit to the interactive queue through the command line.

[nra20@login4 ~]$ bsub -Is -q interactive -P hpc -XF rstudio
Job is submitted to <hpc> project.
Job <27157788> is submitted to queue <interactive>.
<<ssh X11 forwarding job>>
<<Waiting for dispatch ...>>
Warning: Permanently added '10.10.104.5' (ECDSA) to the list of known hosts.
<<Starting on n131>>

The RStudio graphical interface will then appear, from which you can utilize and install any needed packages.

Changing Graphical Backend

In order to utilize the graphical features of RStudio, please change the graphical backend to AGG format. You can do after lauching the graphical
UI from the previous step.

	Navigate to “Tools > Global Optios”

	Navigate to the “Graphics” tab located towards the top of the menu

	Switch the “Backend” option to “AGG”

This option only has to be configured once. Subsequent RStudio sessions will now have the AGG backend enabled and your sessions can
now utilize graphical features.

More information on submitting graphical interactive jobs: https://acs-docs.readthedocs.io/pegasus/jobs/5-interactive.html

If you run into any issues with package installations, please send an email to hpc@ccs.miami.edu

SAS on Pegasus

SAS can be run on Pegasus in Non-interactive/Batch and
Interactive/Graphical modes.

Non-Interactive Batch Mode

In batch mode, SAS jobs should be submitted via LSF using the bsub
command. A sample LSF script file named scriptfile to submit SAS
jobs on Pegasus may include the following lines:

scriptfile

#BSUB -J jobname
#BSUB -o jobname.o%J
#BSUB -e jobname.e%J
sas test.sas

where “test.sas” is an SAS program file.

Type the following command to submit the job:

[username@pegasus ~]$ bsub < scriptfile

For general information about how to submit jobs via LSF, see
Scheduling Jobs on Pegasus.

Interactive Graphical Mode

To run SAS interactively, first forward the
display. Load the SAS module and use the
interactive queue to launch the application.

[username@pegasus ~]$ module load sas
[username@pegasus ~]$ module load java

Submit job to the interactive queue:

[username@pegasus ~]$ bsub -q interactive -P myproject -Is -XF sas
Job is submitted to project.
Job is submitted to queue .

Notice the -P flag in the above bsub command. If you do not
specify your project, you will receive an error like the one below:

[username@pegasus ~]$ bsub -q interactive -Is -XF sas
Error: Your account has multiple projects: project1 project2.
Please specify a project by -P option and resubmit
Request aborted by esub. Job not submitted.

Using R through Anaconda

If you find that the current R modules on Pegasus do not support
dependencies for your needed R packages, an alternative option is
to install them via an Anaconda environment. Anaconda is an open source
distribution that aims to simplify package management
and deployment. It includes numerous data science packages including that of
R.

Anaconda Installation

First you will need to download and install Anaconda in your home directory.

[username@pegasus ~]$ wget https://repo.anaconda.com/archive/Anaconda3-2021.05-Linux-x86_64.sh

Unpack and install the downloaded Anaconda bash script

[username@pegasus ~]$ bash Anaconda3-2021.05-Linux-x86_64.sh

Configuring Anaconda environment

Activate conda with the new Anaconda3 folder in your home directory (Depending on your download this folder might also be named ‘ENTER’)

[username@pegasus ~]$ source <path to conda>/bin/activate
[username@pegasus ~]$ conda init

Create a conda environment that contains R

[username@pegasus ~]$ conda create -n r4_MyEnv r-base=4.1.0 r-essentials=4.1

Activate your new conda environment

[username@pegasus ~]$ conda activate r4_MyEnv
(r4_MyEnv) [username@pegasus ~]$

Note: the syntax to the left of your command line (r4_MyEnv) will indicate which conda environment
is currently active, in this case the R conda environment you just created.

Common R package dependencies

Some R packages like ‘tidycensus’, ‘sqldf’, and ‘kableExtra’ require additional
library dependencies in order to install properly. To install library dependencies you may
need for your R packages, you can use the following command:

(r4_MyEnv) [username@pegasus ~]$ conda install -c conda-forge <library_name>

To check if a library depenency is availabe through the conda-forge channel, use the
following link: https://anaconda.org/conda-forge

Below is an example of installing library dependencies needed for ‘tidycensus’, then the R package itself.

(r4_MyEnv) [username@pegasus ~]$ conda install -c conda-forge udunits2
(r4_MyEnv) [username@pegasus ~]$ conda install -c conda-forge gdal
(r4_MyEnv) [username@pegasus ~]$ conda install -c conda-forge r-rgdal
(r4_MyEnv) [username@pegasus ~]$ R
> install.packages('tidycensus')

Activating conda environment upon login

Whenever you login, you will need to re-activate your conda environment to re-enter it.
To avoid this, you can edit your .bashrc file in your home directory

[username@pegasus ~]$ vi ~/.bashrc

Place the following lines in the .bashrc file:

conda activate r4_MyEnv

Then ‘:wq!’ to write, quit and save the file. Upon logging in again your R conda environment will automatically be active.

If you would like to deactivate your conda environment at any time, use the following command:

(r4_MyEnv) [username@pegasus ~]$ conda deactivate r4_MyEnv

To obtain a list of your conda environments, use the following command:

[username@pegasus ~]$ conda env list

Running jobs

In order to properly run a job using R within a conda environment you will need to
initiate & activate the conda environment within the job script, otherwise the job may fail to find your
version of R. Please see the example job script below:

#!/bin/bash
#BSUB -J jobName
#BSUB -P projectName
#BSUB -o jobName.%J.out
#BSUB -e jobName.%J.err
#BSUB -W 1:00
#BSUB -q general
#BSUB -n 1
#BSUB -u youremail@miami.edu

. “/nethome/caneid/anaconda3/etc/profile.d/conda.sh”
conda activate r4_MyEnv

cd /path/to/your/R_file.R

R CMD BATCH R_file.R

Note: Sometimes you may need to use the ‘Rscript’ command instead of ‘R CMD BATCH’ to run your R file within the job script.

Warning

Please make sure to save your work frequently in case a shutdown happens.

JupyterHub on Pegasus User Menu

Introduction

JupyterHub [https://jupyterhub.readthedocs.io/en/stable/index.html]
provides Jupyter Notebook for multiple users.

Through JupyterHub on Pegasus, you can request and start a Jupyter
Notebook server on one of Pegasus’s compute nodes. In this way, you can interactively test
your Python or R programs through the Notebook with the supercomputer
resources.

Currently all requested Notebook servers are running in only two compute
nodes. It is recommended to use the Notebook as a testing tool and submit formal jobs via LSF.

Using JupyterHub on Pegasus

Login

	First you need to have access to Pegasus. Please check the IDSC ACS Policies

	Connect with the UM network on campus or via
VPN [https://www.it.miami.edu/a-z-listing/virtual-private-network/index.html].

	Open the Login page http://pegasus.ccs.miami.edu:8000 on your
browser.

	Log in using your UM CaneID and Pegasus password.

Starting your Jupyter Notebook server

	Press the Start My Notebook Server button to launch the resource
request page.

	Choose the memory, number of CPU cores, time you want to run the
Notebook server and your associated project.

	Press the Request button to request and start a Notebook server. This will take roughly 15 seconds.

Logout

When using the JupyterHub, you need to be clear that there are three things you need to turn off:

	Close Notebook File - After saving, press File in the menu bar and choose Close and Halt.

	Stop Notebook Server - Click the Control Panel button at the top-right corner and press Stop My Notebook Server.

	Logout from JupyterHub - Click the Logout from JupyterHub button at the top-right corner.

Warning

If you only logout from JupyterHub without stopping the Notebook Server first,
the Notebook Server will run until the time you set up when starting it. This could result in unintended increased SU usage.

Using Jupyter Notebook

After the notebook server starts, you will see the interface page
showing your home directory.

You can create notebook files, text files and folders, or open terminals
using the New button at the top-right corner under the menu bar.

Details can be found at the official Jupyter Notebook User
Documentation [https://jupyter-notebook.readthedocs.io/en/stable/notebook.html].

Creating Your Python Kernel

	$ ssh <caneid>@pegasus.ccs.miami.edu to login to Triton

	$ module load anaconda3

	$ conda create -n <your environment> python=<version> <package1> <package2> ...

	$ conda activate <your environment>

	(your environment)$ conda install ipykernel

	(your environment)$
ipython kernel install --user --name <kernel name> --display-name "<the displayed name for the kernel>"

Here is an example:

(Please press y on your keyboard when you see Proceed ([y]/n)?)

$ module load anaconda3
$ conda create -n myenv python=3.7 numpy scipy
$ conda activate myenv
(myenv)$ conda install ipykernel
(myenv)$ ipython kernel install --user --name my_py37_kernel --display-name "My Python 3.7 with NumPy and SciPy"

Later on, you can still install new packages to the kernel using conda install <package> after activating the environment.

If you run into the following error:
ImportError: cannot import name ‘secure_write’ from ‘jupyter_core.paths’ (/nethome/nalbe007/.conda/envs/newtest/lib/python3.7/site-packages/jupyter_core/paths.py)

You will need to pip install jupyter_client upgrade like so:

(myenv)$ pip install --upgrade jupyter_client

Then try installing your python kernel once more.

Note

If the package could not be found, you can search Anaconda
Cloud [https://anaconda.org/] and choose Platform x64_64

If Anaconda Cloud does not have the package neither, you could try pip install

Warning

Issues may arise when using pip and conda together.
Only after conda has been used to install as many packages
as possible should pip be used to install any remaining software. If
modifications are needed to the environment, it is best to create a new
environment rather than running conda after pip.

After a package is installed, you can use it in your notebook by running import <package name> in a cell.

R Kernels

We currently support a global R kernel named “R” for all users. Personal R kernels are coming soon.
If you require a specific R package installed into the R kernel, please contact an admin at hpc@ccs.miami.edu

Removing Personal Kernels

You can view a list of all your kernels at the following path:

/nethome/<your_caneid>/.local/share/jupyter/kernels

From this directory you can delete kernels using Linux rm kernel_name command.

Using Pre-installed Kernels

Several kernels have been pre-installed on Pegasus. You can use them to test your code if you do not need
additional packages. On the Notebook Dashboard page, you can create a
new notebook file (.ipynb) with a selected kernel by clicking on the
New button at the top-right corner under the menu bar. On the
Notebook Editor page, you can change kernel by clicking Kernel in
the menubar and choosing Change kernel.

Switching to JupyterLab

After the Jupyter Notebook server starts, you can switch to JupyterLab by changing the url from .../tree to .../lab. If you want to stop the server from JupyterLab, choose File >> Hub Control Panel in the menu bar, then press Stop My Notebook Server button in the panel.

SimVascular on Pegasus

SimVascular is available as a software module on Pegasus. SimVascular graphical jobs can be submitted to
the LSF scheduler via the interactive queue using the tk gui.

Forwarding X11

In order to launch a SimVascular interactive job, you will need to login to Pegasus with X11 forwarding enabled.

You will also need to install an X11 server on your local machine such as Xming for Windows or XQuartz for Mac.

Please see the following guide on how to achieve this:
https://acs-docs.readthedocs.io/services/1-access.html?highlight=x11#connect-with-x11-forwarding

Loading the Module

The SimVascular module is dependent on the gcc/8.3.1 software module. This will come pre-loaded once the SimVascular module has been loaded.

[nra20@login4 ~]$ module load simvascular
[nra20@login4 ~]$ module list
 Currently Loaded Modulefiles:
 1) perl/5.18.1(default) 3) simvascular/2021.6.10.lua
 2) gcc/8.3.1

Launching Graphical Interactive Jobs

You can use the following command to launch an interactive job. Be Sure to use the -tk parameter when launching SimVascular in order to utilize
the tk gui.

[nra20@login4 ~]$ bsub -Is -q interactive -P <projectID> -XF sv -tk

The graphical display will take a few seconds to load up. You are free to save projects into your home directory or your project’s scratch directory.
Saving in any directory you do not have access to may result in an error.

Pegasus FAQs - Frequently Asked Questions

Detailed information for FAQ topics is available here and in IDSC ACS Policies

If you are new to Pegasus and HPC clusters, review this documentation on
the Pegasus system, the job scheduler, and modularized software.

Note

IDSC ACS does not install, provide support for, or provide documentation on how to code in your preferred software. ACS documentation contains information on using software in a Linux cluster environment.

Pegasus Projects

Projects on Pegasus

How do I join a project?

Contact the project owner.

How do I request a new project?

Any PI or faculty member may request a new project : https://idsc.miami.edu/project_request

When will my project be created?

When the allocations committee has reviewed and approved it.

Scratch requests over 2TB can take a month for the allocations committee
to review as availability is limited.

How can I manage my Projects and Groups?

Contact IDSC ACS at hpc@ccs.miami.edu

Pegasus Software

Software on Pegasus

What software is available?

Software Modules from the command line: $ module avail

How do I view my currently loaded modules?

$ module list

How do I use software modules?

Software on Pegasus

May I install software?

Yes! Pegasus users are free to compile and install software in their
respective home directories by following the software’s source code or
local installation instructions. See our Software
Installation guide for more information.

Note

IDSC ACS does not install user software. For global installations on Pegasus, submit a Software Request to hpc@ccs.miami.edu

How do I request global software installation on Pegasus?

Submit your request to hpc@ccs.miami.edu

We only globally install software when we receive multiple requests for
the software.

When will my global software request be approved/installed?

When a minimum of 20 users require it, software requests will be
approved. Software requests are reviewed and installed quarterly.

How can I increase Java memory on Pegasus?

Load the java module, then change the value of _JAVA_OPTIONS.

[username@pegasus ~]$ module load java
[username@pegasus ~]$ echo $_JAVA_OPTIONS
-Xmx512m
[username@pegasus ~]$ export _JAVA_OPTIONS="-Xmx4g"

Pegasus Job Scheduling

Scheduling Jobs

May I run resource-intensive jobs on Pegasus login nodes?

No. Resource-intensive jobs must be submitted to LSF.

How do I submit jobs to Pegasus?

With bsub command : LSF

How do I check on my submitted jobs?

With bjobs command : LSF

How do I monitor job progress?

With bpeek command : LSF

Is there a limit on how many jobs I can run?

No. Users are limited by number of simultaneous CPUs used. Individual
users can run on up to 512 CPUs at a time, projects on up to 1000 CPUs
at a time.

How can I see pending and running job counts for Pegasus queues?

With bqueues command : LSF

Why is my job still pending?

Jobs wait for enough resources to satisfy requirements. When the cluster
is under heavy user load, jobs will wait longer. Use
$ bjobs -l jobID to see PENDING REASONS. Check your resource
requirements for accuracy and feasibility.

The Pegasus job scheduler operates under Fairshare scheduling. Fairshare
scheduling divides the processing power of the cluster among users and
queues to provide fair access to resources, so that no user or queue can
monopolize the resources of the cluster and no queue will be starved.

If your job has been pending for more than 24 hours and is not
requesting exclusive access or all cores on a node, you may e-mail
hpc@ccs.miami.edu for assistance.

Are other users’ pending jobs slowing my job?

No. The number of pending jobs is irrelevant to job performance in LSF.
The scheduler can handle hundreds of thousands of jobs.

How do I submit jobs to my Project?

With the -P flag : LSF jobs

How do I submit an interactive job?

With the -Is -q interactive flags : LSF interactive jobs

How do I submit an interactive X11 job?

With the -Is -q interactive -XF flags : LSF interactive jobs

Why was my job killed?

Jobs are killed to protect the cluster and preserve system performance.

Common reasons include:

	running on a login node

	using more memory than reserved

	using all the memory on a compute node

	using more CPUs than reserved

	needing more time to complete than reserved

	using more /tmp space than available on compute nodes

See LSF for assistance with appropriate resource
reservations and Pegasus Queues for default wall
times.

What about jobs in UNKWN state?

Re-queue your job in LSF :

$ bkill -r jobID

$ bkill -r jobID (a second time)

$ brequeue -e jobID

Linux Guides

Introduction to Linux on Pegasus

Pegasus is currently running the CentOS 7.6 operating system, a
distribution of Linux. Linux is a UNIX-like kernel, though in this
document it will generally refer to the entire CentOS distribution. The
three basic components of UNIX-like operating systems are the
kernel, shell, and system programs. The kernel handles
resource management and program execution. The shell interprets user
commands typed at a prompt. System programs implement most operating
system functionalities such as user environments and schedulers.

Everything in Linux is either a file (a collection of data) or a
process (an executing program). Directories in Linux are types of
files.

In the below examples, username represents your access account.

	Navigating the Linux Shell
	View your current shell with echo:

	View all environment variables with env:

	View your current directory with pwd:

	View the contents of a directory with ls:

	Navigate to directories with cd:

	View directory contents with tree:

	Check command availability and location with which:

	Interacting with Files on Pegasus
	Make directories with mkdir:

	Remove directories with rmdir:

	Remove files and directories with rm:

	View file contents with cat:

	Create files with cat and redirection:

	View file contents with head and tail:

	Rename and Move with mv:

	Copy with cp:

	Edit files : nano, emacs, vi:

	View file contents by page with more and less:

	File Permissions in Linux
	Understanding File Permission Categories

	Changing File Permissions in Linux

	Changing Group Ownership in Linux

	Access Control Lists – ACL
	Getting ACL information

	Setting ACL information

	Removing ACL information

Linux FAQs

How can I check my shell?

$ echo $SHELL or $ echo $0

How can I view my environment variables?

$ env or $ env | sort

How can I check command/software availability and location?

$ which executable, for example $ which vim

How can I get help with commands/software?

Use the Linux manual pages: $ man executable, for example
$ man vim

Navigating the Linux Shell

The shell is command-line interface (CLI), a type of user interface that
interprets commands typed at a prompt. The default shell on Pegasus
is Bash.

Users send commands to the shell, which runs them and outputs results.
Commands can include options (or flags) to modify output and
arguments to specify command targets. In Bash, command history can
be accessed from the prompt with up and down arrow keys - use this to
repeat a previously issued command.

Below are some useful Linux shell commands with explanations and
examples. Recall that Linux is case-sensitive– “name” is distinct from
“NAME” and other capital and lower-case combinations (“Name”, “nAMe”,
etc.). To cancel a process and return to the prompt in Linux, press
CTRL-C in Windows or Command-C in Mac.

View your current shell with echo:

The echo command displays a line of text. In Linux, $ denotes a
variable. The $SHELL environment variable contains your current
shell. To view the contents of this variable, send it to the echo
command. Variables will be interpreted by the command even when inside
lines of text, as shown below.

[username@pegasus ~]$ echo $SHELL
/bin/bash
[username@pegasus ~]$ echo "My shell is $SHELL"
My shell is /bin/bash

View all environment variables with env:

To view all your environment variables, use the env command. To view
this list alphanumerically, use env | sort.

[username@pegasus ~]$ env
MODULE_VERSION_STACK=3.2.10
LC_PAPER=en_US.utf8
HOSTNAME=login4
SHELL=/bin/bash
...
[username@pegasus ~]$ env | sort
...

View your current directory with pwd:

Directories in Linux are similar to folders in other operating
systems. Your home directory is the default location after login. The
shortcut for home in Bash is the tilde (~), shown below just before
the prompt ($). pwd outputs the absolute path, the unique
location starting from the topmost, or root, directory (/).

[username@pegasus ~]$ pwd
/nethome/username

View the contents of a directory with ls:

Entering the ls command without arguments (as shown below) lists the
contents of the current directory. If this is your first connection to
Pegasus, your home directory may be empty. Directories can be
distinguished from files by the leading d in file permissions.

[username@pegasus ~]$ ls
example_file1 example_file2 testdir1

To view the contents of a specific directory, send the path as an
argument to ls. In this example the current directory is home, which
contains testdir1. As shown in the output, testdir1 contains one
file: testdir1_file1

[username@pegasus ~]$ ls testdir1
testdir1_file1

Note that you can press the TAB key on your keyboard to
auto-complete names. If there are multiple matches, a list of options
will be shown. Type the next letter and press TAB again until
tab-complete finishes.

Command details and flag information can be found in the Linux manual
pages, accessible via the command line:

[username@pegasus ~]$ man topic or command

Press SPACE to see the next set of lines. To scroll, use the arrow
keys or Page Up and Page Down. To exit, type q.

ls can be run with options, or flags, to customise output. For
example, view more detailed information such as file permissions using
the -lh flags.

[username@pegasus ~]$ ls -lh
total 0
-rw-r--r-- 1 username ccsuser 54 example_file1
-rw-r--r-- 1 username ccsuser 476 example_file2
drwxr-xr-x 2 username ccsuser 512 testdir1
...

The flags on this ls -lh command:

	-l long list format (includes permissions, owner, and more)

	-h human readable filesize format (useful for larger file sizes)

Other useful ls flags:

	-a include hidden files *

	-d list properties of a directory itself, not the contents

	-1 (number 1) one result per line

	-R recursively list subdirectory contents

	-S sort by file size

	-X sort alphanumerically by extension

	-m comma-separated list

* Hidden files include the . and .. directories, which
represent the current and parent (respectively). These can be used as
shortcuts in relative paths:

[username@pegasus testdir1]$ ls -a
. .. testdir1_file1
[username@pegasus testdir1]$ ls ..
example_file1 example_file2 testdir1

Navigate to directories with cd:

This command changes your current directory to the path specified, which
can be absolute, starting with /, or relative, starting from
the current directory.

[username@pegasus ~]$ cd testdir1
[username@pegasus testdir1]$

Some useful cd commands:

	cd or cd ~ move to user’s home directory

	cd .. move to parent directory

	cd - move to previous working directory

View directory contents with tree:

Pegasus has the tree package installed, which recursively outputs a
depth-indented list of contents. This may be more helpful than ls
for nested directories.

[username@pegasus ~]$ tree -vC
.
|-- example_file1
|-- example_file2
|-- testdir1
 `-- testdir1_file1

1 directory, 3 files

The flags on this tree -vC command:

	-v sort alphanumerically by type

	-C colorise output

Other useful tree flags:

	-a include hidden files

	-d list directories only

	-r sort reverse alphanumerically

	-L number descend only number levels deep

Check command availability and location with which:

The which command returns the full path of any shell commands
registered in the current environment by searching locations in the
$PATH environment variable. Use which to check command and
software availability and location.

[username@pegasus ~]$ which bash
/bin/bash
[username@pegasus ~]$ which vim
/usr/bin/vim
[username@pegasus ~]$ which python
/share/opt/python/2.7.3/bin/python

Interacting with Files

Make directories with mkdir:

This command creates new, empty directories.

[username@pegasus ~]$ mkdir testdir2
[username@pegasus ~]$ ls
example_file1 example_file2 testdir1 testdir2

Multiple directories can be created at the same time, as can directory
hierarchies:

[username@pegasus ~]$ mkdir firstdir seconddir
[username@pegasus ~]$ ls
example_file1 example_file2 firstdir secondir testdir1 testdir2

[username@pegasus ~]$ mkdir -pv level1/level2/level3
mkdir: created directory `level1'
mkdir: created directory `level1/level2'
mkdir: created directory `level1/level2/level3'
[username@pegasus ~]$ ls
example_file1 example_file2 firstdir level1 seconddir testdir1 testdir2
[username@pegasus ~]$ ls level1
level2

The flags on this mkdir -pv command:

	-p make parent directories as needed

	-v print a message for each created directory

If a directory already exists, mkdir will output an error message:

[username@pegasus ~]$ mkdir testdir1
mkdir: cannot create directory `testdir1': File exists

Remove directories with rmdir:

Directories must be empty for rmdir to remove them.

[username@pegasus ~]$ rmdir firstdir seconddir
[username@pegasus ~]$ ls
example_file1 example_file2 level1 testdir1 testdir2

[username@pegasus ~]$ rmdir testdir1 level1
rmdir: failed to remove `testdir1': Directory not empty
rmdir: failed to remove `level1': Directory not empty
[username@pegasus ~]$ ls testdir1 level1
level1:
level2

testdir1:
testdir1_file1

The individual directories in the above example are empty. The top level
of the hierarchy in the above example is not empty, neither is
testdir1. To remove directories that are not empty, see rm.

Remove files and directories with rm:

There is no ‘recycle bin’ on Pegasus. Removing files with rm
is permanent and cannot be undone.

[username@pegasus ~]$ rm -v example_file3
removed `example_file3'
[username@pegasus ~]$ ls
example_file1 example_file2 level1 testdir1 testdir2

The flag on this rm -v command:

	-v print a message for each removed file or directory

Because directories are types of files in Linux, rm can be used with
the recursive flag to remove directories. Recall that rm in Linux is
permanent and cannot be undone. Without the recursive flag, rm
on a directory will produce an error as shown below.

[username@pegasus ~]$ rm level1
rm: cannot remove `level1': Is a directory
[username@pegasus ~]$ rm -rv level1
removed directory: `level1/level2/level3'
removed directory: `level1/level2'
removed directory: `level1'

The flags on this rm -rv command:

	-r remove directories and their contents recursively

	-v print a message for each removed file or directory

View file contents with cat:

cat reads file contents into standard output, typically the display.
This is best used for small text files.

[username@pegasus ~]$ cat example_file1
This is example_file1.
It contains two lines of text.
[username@pegasus ~]$ cat -nE example_file1
 1 This is example_file1.$
 2 It contains two lines of text.$

Flags used in this command for cat:

	-n number all output lines

	-E display $ at the end of each line

Other useful flags:

	-b number non-empty output lines

When no file is given, cat reads standard input (typically from
the keyboard) then outputs contents (typically the display). Press
CTRL-D (Windows) or Command-D (Mac) to return to the prompt.

[username@pegasus ~]$ cat
No file was given- cat reads standard input from the keyboard and will output this to the display.
No file was given- cat reads standard input from the keyboard and will output this to the display.
CTRL-D or Command-D
[username@pegasus ~]$

This feature can be used to create files.

Create files with cat and redirection:

Redirection operators in Linux send output from one source as input
to another. > redirects standard output (typically the display) to a
file. Combine cat with > to create a new file and add content
immediately.

[username@pegasus ~]$ cat > example_file3
This is example_file3.
These lines are typed directly into the file.
Press CTRL-D (Windows) or Command-D (Mac) to return to the prompt.
CTRL-D or Command-D
[username@pegasus ~]$ cat example_file3
This is example_file3.
These lines are typed directly into the file.
Press CTRL-D (Windows) or Command-D (Mac) to return to the prompt.

Note that the > operator overwrites file contents. To append,
use the append operator: >>

[username@pegasus ~]$ cat >> example_file3
This is an appended line.
CTRL-D or Command-D
[username@pegasus ~]$ cat example_file3
This is example_file3.
These lines are typed directly into the file.
Press CTRL-D (Windows) or Command-D (Mac) to return to the prompt.
This is an appended line.

Linux output redirection operators:

	> overwrite standard output a file

	>> append standard output to a file

View file contents with head and tail:

For longer text files, use head and tail to restrict output. By
default, both output 10 lines - head the first 10, tail the last
10. This can be modified with numerical flags.

[username@pegasus ~]$ head example_file2
This is example_file2. It contains 20 lines.
This is the 2nd line.
This is the 3rd line.
This is the 4th line.
This is the 5th line.
This is the 6th line.
This is the 7th line.
This is the 8th line.
This is the 9th line.
This is the 10th line.
[username@pegasus ~]$ head -3 example_file2
This is example_file2. It contains 20 lines.
This is the 2nd line.
This is the 3rd line.

[username@pegasus ~]$ tail -4 example_file2
This is the 17th line.
This is the 18th line.
This is the 19th line.
This is the 20th line, also the last.

Rename and Move with mv:

Moving and renaming in Linux uses the same command, thus files can be
renamed as they are moved. In this example, the file example_file1
is first renamed using mv and then moved to a subdirectory (without
renaming).

[username@pegasus ~]$ mv example_file1 example_file0
[username@pegasus ~]$ ls
example_file0 example_file2 testdir1 testdir2
[username@pegasus ~]$ mv example_file0 testdir1/
[username@pegasus ~]$ ls testdir1
example_file0 testdir1_file1

In this example, the file example_file0 is moved and renamed at the
same time.

[username@pegasus ~]$ mv -vn testdir1/example_file0 example_file1
`testdir1/example_file0' -> `example_file1'
[username@pegasus ~]$ ls
example_file1 example_file2 testdir1 testdir2

The flags on this mv -vn command:

	-v explain what is being done

	-n do not overwrite and existing file

Note that when mv is used with directories, it is recursive by
default.

[username@pegasus ~]$ mv -v testdir1 testdir2/testdir1
`testdir1' -> `testdir2/testdir1'
[username@pegasus ~]$ ls -R testdir2
testdir2:
testdir1

testdir2/testdir1:
testdir1_file1

The file inside tesdir1 moved along with the directory.

Copy with cp:

File and directory copies can be renamed as they are copied. In this
example, example_file1 is copied to example_file0.

[username@pegasus ~]$ cp example_file1 example_file0
[username@pegasus ~]$ cat example_file0
This is example_file1.
It contains two lines of text.

The contents of the copied file are the same as the original.

cp is not recursive by default. To copy directories, use the
recursive flag -R.

[username@pegasus ~]$ cp -Rv testdir2 testdir2copy
`testdir2' -> `testdir2copy'
`testdir2/testdir1' -> `testdir2copy/testdir1'
`testdir2/testdir1/testdir1_file1' -> `testdir2copy/testdir1/testdir1_file1'
[username@pegasus ~]$ ls
example_file0 example_file1 example_file2 testdir2 testdir2copy

The flags on this cp -Rv command:

	-R copy directories recursively

	-v for verbose, explain what is being done

Other useful flags:

	-u (update) copy only when source is newer, or destination is
missing

	-n do not overwrite an existing file

	-p preserve attributes (mode, ownership, and timestamps)

Edit files : nano, emacs, vi:

nano and emacs are simple text editors available on the cluster and most Linux systems, while vi is a modal text editor with a bit of a learning curve.

For a quick comparison of these text editors, see : https://www.linuxtrainingacademy.com/nano-emacs-vim/

vi can be launched with the command vi (plain) or vim
(syntax-highlighted based on file extension). vi has two main modes:
Insert and Command.

	Command mode: searching, navigating, saving, exiting, etc.

	Insert mode: inserting text, pasting from clipboard, etc.

vi launches in Command mode by default. To enter Insert mode, type
i on the keyboard. Return to Command mode by pressing ESC on the
keyboard. To exit and save changes, type :x (exit with save) or
:wq (write and quit) on the keyboard while in Command mode (from
Insert mode, type ESC before each sequence).

In the example below, the arrow keys are used to navigate to the end of
the first line. i is pressed to enter Insert mode and the file name
on line 1 is changed. Then ESC:x is entered to change to Command
mode and exit saving changes.

[username@pegasus ~]$ vi example_file0
...
This is example_file0.
It contains two lines of text.
~
~
~
~
"example_file0" 2L, 54C
:x
[username@pegasus ~]$ cat example_file0
This is example_file0.
It contains two lines of text.

Some vi tutorials, commands, and comparisons :

	https://www.ccsf.edu/Pub/Fac/vi.html

	http://www.cs.colostate.edu/helpdocs/vi.html

	https://www.linuxtrainingacademy.com/nano-emacs-vim/

View file contents by page with more and less:

Pager applications provide scroll and search functionalities, useful for
larger files. Sets of lines are shown based on terminal height. In both
more and less, SPACE shows the next set of lines and q
quits. more cannot scroll backwards. In less, navigate with the
arrow keys or Page Up and Page Down, and search with ?
(similar to man pages).

[username@pegasus testdir1]$ less testdir1_file1
...
This is tesdir1_file1. It contains 42 lines.
02
03
04
05
06
07
: SPACE or Page Down
36
37
38
39
40
41
42
(END) q
[username@pegasus testdir1]$

File Permissions

File permissions control which users can do what with which files on a
Linux system. Files have three distinct permission sets:  one for the
user who owns the file (u), one for the associated group (g),
and one for all other system users (o). Recall that directories are
types of files in Linux.

Note

As policy, IDSC does not alter user files on our systems.

To view file permissions, list directory contents in long listing format
with ls -l. To check directory permissions, add the -d
flag: ls -ld. Paths can be relative or absolute.

[username@pegasus ~]$ ls -l /path/to/directory/or/file
...
[username@pegasus ~]$ ls -ld /path/to/directory
...

Understanding File Permission Categories

Permissions are defined by three categories:

u : user (owner)
g : group
o : other

Each category has three permission types, which are either on or
off:

r : read
w : write
x : execute

For a directory, x means users have permission to search the
directory.

File and Directory Permission Examples:

mydir contains two files. The owner (u) has read and write (rw)
permissions, members of ccsuser (g) have read (r) permissions, and
all other users (o) have read (r) permissions.

[username@pegasus ~]$ ls -l /nethome/username/mydir
total 0
-rw-r--r-- 1 username ccsuser myfile.txt
-rw-r--r-- 1 username ccsuser myfile2.txt

For the directory mydir, the owner (u) has read, write, and browse
(rwx) permissions, members of ccsuser have read and browse (rx), and
all other users (o) have read only (r).

[username@pegasus ~]$ ls -ld /nethome/username/mydir
drwxr-xr-- 2 username ccsuser /nethome/username/mydir

Decimal representation

Permissions can also be represented with 3 decimal numbers,
corresponding to the decimal representation of each category’s binary
permissions. Decimal representation can be used when changing file
permissions.

myfile.txt has the following binary and decimal permissions:

-rw- r-- r-- 1 username ccsuser myfile.txt
 110 100 100
 6 4 4

 - : this file is not a directory
rw- : u - username (owner) can read and write
r-- : g - members of ccsuser can read only
r-- : o - other users can read only

mydir (a directory) has the following permissions:

drwx r-x --x 2 username ccsuser /nethome/username/mydir
 111 101 100
 7 5 4

 d : this file is a directory
rwx : u - username (owner) can read, write, and execute
r-x : g - members of ccsuser can read and execute
--x : o - other users can execute (search directory)

Changing File Permissions in Linux

Use chmod to change the access mode of a file or directory. The
basic syntax is chmod options file.

The 3 options are: category, operator, and permission (in order).
Options can also be assigned numerically using the decimal value for
each category (note that all three decimal values must be present and
are assigned in category order - u, g, o). Use the -R flag with
chmod to apply permissions recursively, to all contents of a
directory.

Categories for chmod:

u : user (who owns the file)
g : group
o : other
a : all categories (u, g, and o shortcut)

Operators for chmod:

= : assigns (overwrites) permissions
+ : adds permissions
- : subtracts permissions

Permissions for chmod:

r : read
w : write
x : execute

Examples with chmod

Assign file owner (u) full permissions (rwx) on myfile.txt:

[username@pegasus mydir]$ chmod u=rwx myfile.txt
[username@pegasus mydir]$ ls -l myfile.txt
-rwxr--r-- 1 username ccsuser myfile.txt

Assign full permissions (7) for file owner, read and write (6) for
members of ccsuser, and execute only (1) for others:

[username@pegasus mydir]$ chmod 761 myfile.txt
[username@pegasus mydir]$ ls -l myfile.txt
-rwx rw- --x 1 username ccsuser myfile.txt
 111 110 001
 7 6 1

Add for members of ccsuser (g) full permissions (rwx) on mydir and
all files under mydir (-R flag):

[username@pegasus ~]$ chmod -R g+rwx mydir
[username@pegasus ~]$ ls -l mydir
total 0
-rw-rwxr-- 1 username ccsuser myfile2.txt
-rwxrwxr-- 1 username ccsuser myfile.txt
[username@pegasus ~]$ ls -ld mydir
drwxrwx--x 2 username ccsuser mydir

Remove for members of ccsuser (g) write permission (w) on mydir and
all files under mydir (-R flag):

[username@pegasus ~]$ chmod -R g-w mydir
[username@pegasus ~]$ ls -l mydir
total 0
-rw-r-xr-- 1 username ccsuser myfile2.txt
-rwxr-xr-- 1 username ccsuser myfile.txt
[username@pegasus ~]$ ls -ld mydir
drwxr-x--x 2 username ccsuser mydir

Add for members of ccsuser (g) write permission (w) on mydir,
directory only:

[username@pegasus ~]$ chmod g+w mydir
[username@pegasus ~]$ ls -ld mydir
drwxrwx--x 2 username ccsuser mydir
[username@pegasus ~]$ ls -l mydir
total 0
-rw-r-xr-- 1 username ccsuser myfile2.txt
-rwxr-xr-- 1 username ccsuser myfile.txt

Changing Group Ownership in Linux

Use chgrp to change the group ownership of a file or directory. The
basic syntax is chgrp group file.

The file owner must be a member of the group. By default,
chgrp does not traverse symbolic links.

Use the -R flag with chgrp to apply the group change
recursively, to all contents of a directory.

Examples with chgrp

Change the group ownership of mydir to mygroup, directory only:

[username@pegasus ~]$ chgrp mygroup mydir
[username@pegasus ~]$ ls -ld mydir
drwxrwx--x 2 username mygroup mydir
[username@pegasus ~]$ ls -l mydir
total 0
-rw-r-xr-- 1 username ccsuser myfile2.txt
-rwxr-xr-- 1 username ccsuser myfile.txt

Change the group ownership of mydir and all files under mydir to
mygroup (-R flag):

[username@pegasus ~]$ chgrp -R mygroup mydir
[username@pegasus ~]$ ls -ld mydir
drwxrwx--x 2 username mygroup mydir
[username@pegasus ~]$ ls -l mydir
total 0
-rw-r-xr-- 1 username mygroup myfile2.txt
-rwxr-xr-- 1 username mygroup myfile.txt

Access Control Lists – ACL

Access Control Lists (ACL) are available on Pegasus and Triton file systems.
They allow file owners to grant permissions to specific users and
groups. When combining standard Linux permissions and ACL permissions,
effective permissions are the intersection (or overlap) of the two.
cp (copy) and mv (move/rename) will include any ACLs associated
with files and directories.

Getting ACL information

ACL permissions start the same as the standard Linux permissions shown
by ls -l output.

Get ACL information with getfacl:

[username@pegasus ~]$ getfacl mydir
file: mydir
owner: username
group: mygroup
user::rwx
group::rw-
other::--x

Initial ACL permissions on mydir match the standard permissions
shown by ls -ld:

[username@pegasus ~]$ ls -ld mydir
drwxrw---x 2 username mygroup mydir

Setting ACL information

Once an ACL has been set for a file or directory, a + symbol will
show at the end of standard Linux permissions.

Set ACL with setfacl -m (modify):

Set for user mycollaborator permissions rwx on mydir, directory
only:

[username@pegasus ~]$ setfacl -m user:mycollaborator:rwx mydir

This will set an ACL for only the directory, not any files in the
directory.

[username@pegasus ~]$ ls -ld mydir
drwxrw---x+ 2 username mygroup mydir
[username@pegasus ~]$ getfacl mydir
file: mydir
owner: username
group: mygroup
user::rwx
user:mycollaborator:rwx
group::rw-
mask::rwx
other::r--

Note the + symbol at the end of standard permissions, which
indicates an ACL has been set. Also note the line
user:mycollaborator:rwx in the getfacl mydir output.

Files within mydir remain unchanged (no ACL has been set).
getfacl on these files returns standard Linux permissions:

[username@pegasus ~]$ ls -l mydir
total 0
-rwxrw-r-- 1 username mygroup myfile2.txt
-rwxrw-r-- 1 username mygroup myfile.txt
[username@pegasus ~]$ getfacl mydir/myfile.txt
file: mydir/myfile.txt
owner: username
group: mygroup
user::rwx
group::rw-
other::r--

Set for user mycollaborator permissions rwX on mydir,
recursively (all contents):

[username@pegasus ~]$ setfacl -Rm user:mycollaborator:rwX mydir

This will set an ACL for the directory and all files in the directory.
Permissions for setfacl:

	r read

	w write

	X (capital) execute/search only if the file is a directory, or
already has execute permission

[username@pegasus ~]$ ls -l mydir
total 0
-rwxrw-r--+ 1 username mygroup myfile2.txt
-rwxrw-r--+ 1 username mygroup myfile.txt

Note the + symbol after file permissions, indicating an ACL has been
set. getfacl on these files returns ACL permissions:

[username@pegasus ~]$ getfacl mydir/myfile.txt
file: mydir/myfile.txt
owner: username
group: mygroup
user::rwx
user:mycollaborator:rwx
group::rw-
mask::rwx
other::r--

Note the line user:mycollaborator:rwx for myfile.txt.

Recall that when combining standard Linux permissions and ACL
permissions, effective permissions are the intersection of the two. If
user (u) permissions are changed to rw-, the effective permissions for
user:mycollaborator are rw- (the intersection of rwx and rw- is
rw-).

[username@pegasus ~]$ chmod u=rw mydir/myfile.txt
[username@pegasus ~]$ getfacl mydir/myfile.txt
file: myfile.txt
owner: username
group: mygroup
user::rw-
user:mycollaborator:rwx
group::rw-
mask::rwx
other::r--

Note the line user::rw-, indicating users do not have permission to
execute this file.

Removing ACL information

Use setfacl to remove ACL permissions with flags -x (individual
ACL permissions) or -b (all ACL rules).

Remove ACL permissions with setfacl -x:

This flag can remove all permissions, but does not remove the ACL.

Remove permissions for user mycollaborator on mydir, directory
only:

[username@pegasus ~]$ setfacl -x user:mycollaborator mydir
[username@pegasus ~]$ getfacl mydir
file: mydir
owner: username
group: mygroup
user::rwx
group::rw-
mask::rwx
other::--x
[username@pegasus ~]$ ls -ld mydir
drwxrwx--x+ 2 username mygroup mydir

Note user:mycollaborator:rwx has been removed, but mask::rwx
remains in the getfacl output. In ls -ld output, the +
symbol remains because the ACL has not been removed.

Remove all ACL rules with setfacl -b:

This flag removes the entire ACL, leaving permissions governed only by
standard Linux file permissions.

Remove all ACL rules for mydir, directory only:

[username@pegasus ~]$ setfacl -b mydir
[username@pegasus ~]$ ls -ld mydir
drwxrwx--x 2 username mygroup mydir
[username@pegasus ~]$ getfacl mydir
file: mydir
owner: username
group: mygroup
user::rwx
group::rwx
other::--x

Note the + symbol is gone from ls -ld output, indicating only
standard Linux permissions apply (no ACL). The mask line is gone
from getfacl output.

Remove all ACL rules for mydir, recursively (all contents):

[username@pegasus ~]$ setfacl -Rb mydir
[username@pegasus ~]$ ls -l mydir
total 0
-rwxrwxr-- 1 username mygroup myfile2.txt
-rwxrwxr-- 1 username mygroup myfile.txt

Note the + symbols are gone for the contents of mydir,
indicating only standard Linux permissions apply (no ACLs).

For more information, reference the manual pages for getfacl and
setfacl:  man getfacl and man setfacl.

Advanced Computing Systems Services

	Access (SSH, x11, VPN)
	Windows

	Mac and Linux

	Forwarding the display with x11

	Connecting to IDSC Systems from offsite

	Storage
	GPFS storage

	CES storage

	File Transfers
	Using command line utilities

	Using FileZilla

	Using the gateway server

	IDSC Onboarding Training Videos

Connecting to Advanced Computing Systems

Use a secure-shell (SSH) client to connect for secure, encrypted communication. From within UM’s secure network (SecureCanes wired connection on campus) or VPN, connect from:

Windows

Connect using a terminal emulator like PuTTY
(www.putty.org [http://www.putty.org])

Log into IDSC servers with the appropriate account credentials. Pegasus example:

username@pegasus.ccs.miami.edu (optional username @ host)
22 (port)
SSH (connection type)

[image: PuTTY in Windows]

PuTTY in Windows

Mac and Linux

Connect with the Terminal program, included with the Operating Systems.

Log into IDSC servers with the approprite acount credentials. Pegasus example:

bash-4.1$ ssh username@pegasus.ccs.miami.edu
username@pegasus.ccs.miami.edu’s password:

or SSH without account credentials to be prompted:

bash-4.1$ ssh pegasus.ccs.miami.edu
login as: username
username@pegasus.ccs.miami.edu's password:

To use SSH key pairs to authenticate, see the CentOS wiki:
http://wiki.centos.org/HowTos/Network/SecuringSSH

Forwarding the display with x11

To use graphical programs over SSH, the graphical display must be
forwarded securely. This typically requires running an X Window System
server and adding the -X option when connecting via SSH.

Download an X Window System server

	For Windows, Xming with the default installation options : http://sourceforge.net/projects/xming/files/latest/download

	For Mac, XQuartz (OSX 10.8+) : http://www.xquartz.org/

OS X versions 10.5 through 10.7 include X11 and do not require XQuartz.

Connect with X11 forwarding

Launch the appropriate X Window server before connecting to IDSC servers via SSH.

Windows: Configure PuTTY for X11 display forwarding

In PuTTY Configuration,

	scroll to the Connection category and expand it

	scroll to the SSH sub-category and expand it

	click on the X11 sub-category

On the X11 Options Panel,

	check “Enable X11 forwarding”

	enter “localhost:0” in the “X display location” text field

[image: PuTTY X11]

PuTTY X11

Mac: Connect with X11 flag

Using either the Mac Terminal or the xterm window, connect using the
-X flag:

bash-4.1$ ssh -X username@pegasus.ccs.miami.edu

Launch a graphical application

Use & after the command to run the application in the background,
allowing continued use of the terminal.

[username@pegasus ~]$ firefox &

Connecting to IDSC Systems from offsite

Triton, Pegasus, and other IDSC resources are only available from within the
University’s secure campus networks (wired or SecureCanes wireless). To
access IDSC resources while offsite, open a VPN connection first. IDSC does not
administer VPN accounts.

University of Miami VPN:
https://my.it.miami.edu/wda/a-z/virtual-private-network/

Send access range requests (for Vendor VPN applications) to : IDSC ACS

Storage Services

We offer two types of storage: GPFS (“General Parallel File System”) and CES (“cost-effective storage”)

	GPFS is attached to the high speed network and is suitable for supporting computation.

	CES is a slower-access, less expensive option that is suitable for data that are not in active use. It is not attached to computational resources.

GPFS storage

	Each project may utilize up to 2T of GPFS scratch space. Scratch space is intended only for data in active use. Scratch space is subject to purging when necessary for continued operation.

	Scratch space is charged only for actual utilization.

	Projects may also request allocation of dedicated GPFS storage.

	Dedicated space is charged for total allocation and not by utilization.

CES storage

	Projects may also request 10T of CES storage.

	The Principle Investigator (PI) of project must contact hpc@ccs.miami.edu for access to CES Storage.

	Usage above 10T requires review by the allocations committee.

	Fee for 10T of CES project storage is charged annually. ($300)

	CES storage is restricted to SFTP access through apex.idsc.miami.edu.

You can access your CES storage using any SFTP client. We recommend FileZilla. Please see Using Filezilla use case in URL below.

https://acs-docs.readthedocs.io/services/2-transfer.html

Please note that CES storage is currently only accessible through apex.idsc.miami.edu. It is not accessible through any other IDSC server. You will also only have access to your lab’s directory. If you do not know the directory or have any other questions or concerns please contact hpc@ccs.miami.edu.

Transferring Files

IDSC systems support multiple file transfer programs such as FileZilla and
PSFTP, and common command line utilities such as scp and rsync.
Use cluster head nodes (login nodes) for these types of file transfers.
For transferring large amounts of data from systems outside the
University of Miami, IDSC ACS also offers a gateway server that supports
SFTP and Globus.

Using command line utilities

Use cp to copy files within the same computation system. Use
scp, sftp, or rsync to transfer files between computational
systems (e.g., scratch space to Visx project space). When executing
multiple instantiations of command line utilities like rsync and scp,
please *limit your transfers to no more than 2-3 processes at a
time.*

scp

An example transfer might look like this:

[localmachine: ~]$ scp /local/filename \
 username@pegasus.ccs.miami.edu:/scratch/projectID/directory

To transfer a directory, use the -r flag (recursive):

[localmachine: ~]$ scp -r /local/directory \
 username@pegasus.ccs.miami.edu:/scratch/projectID/directory

Consult the Linux man pages for more information on scp.

rsync

The rsync command is another way to keep data current. In contrast to
scp, rsync transfers only the changed parts of a file (instead of
transferring the entire file). Hence, this selective method of data
transfer can be much more efficient than scp. The following example
demonstrates usage of the rsync command for transferring a file named
“firstExample.c” from the current location to a location on Pegasus.

[localmachine: ~]$ rsync firstExample.c \
 username@pegasus.ccs.miami.edu:/scratch/projectID/directory

An entire directory can be transferred from source to destination by
using rsync. For directory transfers, the options -atvr will
transfer the files recursively (-r option) along with the
modification times (-t option) and in the archive mode (-a
option). Consult the Linux man pages for more information on rsync.

rclone

The rclone a command-line program that can be used to manage your file over SFTP. Rclone supports over 40 cloud storage backends, as well as standard transfer protocols like SFTP. This is a use case using rclone to migrate data from legacy storage to IDSC CES on apex.idsc.miami.edu using the latest version of rclone on Pegasus, rclone v1.63.1.

Load the rclone software module

[nra20a@login4 ~]$ module load rclone
[nra20@login4 ~]$ module list
Currently Loaded Modulefiles:
 1) perl/5.18.1(default) 2) rclone/1.63.1

[nra20@login4 ~]$ rclone -V
rclone v1.63.1
- os/version: centos 7.6.1810 (64 bit)
- os/kernel: 3.10.0-957.el7.x86_64 (x86_64)
- os/type: linux
- os/arch: amd64
- go/version: go1.20.6
- go/linking: static
- go/tags: none

Configure a new remote

1. Login to Pegasus

$ ssh pegasus.ccs.miami.edu

2. Create a new Remote

[pdavila@login4 ~]$ rclone config
 No remotes found - make a new one
 n) New remote
 s) Set configuration password
 q) Quit config

 n/s/q> n
 name> apex

3. Select your Storage Option (SSH/SFTP Connection “sftp”)

...
Option Storage.
Type of storage to configure.
Choose a number from below, or type in your own value.
...
40 / SSH/SFTP Connection "sftp"
...
Storage> 40

4. Enter apex host name

Option host.
SSH host to connect to.
E.g. "example.com".
Enter a value.
host> apex.idsc.miami.edu

5. Enter your username

Option user.
SSH username.
Enter a string value. Press Enter for the default (pdavila).
user> pdavila

6. Enter port number (leave blank)

Option port.
SSH port number.
Enter a signed integer. Press Enter for the default (22).
port>

7. Enter your password

Option pass.
SSH password, leave blank to use ssh-agent.
Choose an alternative below. Press Enter for the default (n).
y) Yes, type in my own password
g) Generate random password
n) No, leave this optional password blank (default)
y/g/n> y
Enter the password:
password:
Confirm the password:
password:

8. Option key files (can be left blank by default)

Option key_pem.
Raw PEM-encoded private key.
If specified, will override key_file parameter.
Enter a value. Press Enter to leave empty.
key_pem>

Option key_file.
Path to PEM-encoded private key file.
Leave blank or set key-use-agent to use ssh-agent.
Leading `~` will be expanded in the file name as will environment variables such as `${RCLONE_CONFIG_DIR}`.
Enter a value. Press Enter to leave empty.
key_file>

9. Option key file password (type your own password)

Option key_file_pass.
The passphrase to decrypt the PEM-encoded private key file.
Only PEM encrypted key files (old OpenSSH format) are supported. Encrypted keys
in the new OpenSSH format can't be used.
Choose an alternative below. Press Enter for the default (n).
y) Yes, type in my own password
g) Generate random password
n) No, leave this optional password blank (default)
y/g/n> y
Enter the password:
password:
Confirm the password:
password:

10. Public key options (Can be left blank by default)

Option pubkey_file.
Optional path to public key file.
Set this if you have a signed certificate you want to use for authentication.
Leading `~` will be expanded in the file name as will environment variables such as `${RCLONE_CONFIG_DIR}`.
Enter a value. Press Enter to leave empty.
pubkey_file>

Option key_use_agent.
When set forces the usage of the ssh-agent.
When key-file is also set, the ".pub" file of the specified key-file is read and only the associated key is
requested from the ssh-agent. This allows to avoid `Too many authentication failures for *username*` errors
when the ssh-agent contains many keys.
Enter a boolean value (true or false). Press Enter for the default (false).
key_use_agent>

11. Insecure cipher and hash options can be left blank by default

Option use_insecure_cipher.
Enable the use of insecure ciphers and key exchange methods.
This enables the use of the following insecure ciphers and key exchange methods:
- aes128-cbc
- aes192-cbc
- aes256-cbc
- 3des-cbc
- diffie-hellman-group-exchange-sha256
- diffie-hellman-group-exchange-sha1
Those algorithms are insecure and may allow plaintext data to be recovered by an attacker.
This must be false if you use either ciphers or key_exchange advanced options.
Choose a number from below, or type in your own boolean value (true or false).
Press Enter for the default (false).
 1 / Use default Cipher list.
 \ (false)
 2 / Enables the use of the aes128-cbc cipher and diffie-hellman-group-exchange-sha256, diffie-hellman-group-exchange-sha1 key
exchange.
 \ (true)
 use_insecure_cipher>

Option disable_hashcheck.
Disable the execution of SSH commands to determine if remote file hashing is available.
Leave blank or set to false to enable hashing (recommended), set to true to disable hashing.
Enter a boolean value (true or false). Press Enter for the default (false).
disable_hashcheck>

Edit advanced config?
y) Yes
n) No (default)
y/n>

12. Configurations are now complete and will be shown, you can type in ‘q’ to quit the config menu

Configuration complete.
Options:
- type: sftp
- host: apex.idsc.miami.edu
- pass: *** ENCRYPTED ***
- key_file_pass: *** ENCRYPTED ***
Keep this "apex" remote?
y) Yes this is OK (default)
e) Edit this remote
d) Delete this remote
y/e/d>

Current remotes:

Name Type
==== ====
apex sftp

e) Edit existing remote
n) New remote
d) Delete remote
r) Rename remote
c) Copy remote
s) Set configuration password
q) Quit config
e/n/d/r/c/s/q>q

Transfer your data to remote site

The rclone lsd command will list the folders of the current specified path in the remote system

[nra20@login4 ~]$ rclone lsd apex:/
 -1 2023-08-09 10:36:35 -1 acs
 -1 2022-11-04 15:20:10 -1 bin
 -1 2022-11-28 15:36:50 -1 dcrawford
 -1 2022-11-04 15:19:15 -1 lib64
 -1 2022-09-30 18:17:33 -1 netra
 -1 2022-09-13 18:12:26 -1 schurerlab
 -1 2023-08-08 17:35:21 -1 selipot

You can create a subdirectory if needed using the rclone mkdir command

[nra20@login4 ~]$ rclone mkdir apex:/acs/nra20
[nra20@login4 ~]$ rclone lsd apex:/acs
 -1 2022-06-08 12:40:43 -1 mihg-mapping
 -1 2023-08-09 10:39:04 -1 nra20
 -1 2022-11-04 15:23:17 -1 pdavila

Note: Because rclone copy command can take hours to complete, we recommend you use the screen command when running rclone interactively. This way the sync will not terminate prematurally, should your ssh session end.

[pdavila@login4 ~]$ screen
[pdavila@login4 ~]$ rclone copy /projects/ccs/schurerlab/cheminfo/pdavila apex:/schurerlab/pdavila
[pdavila@login4 ~]$ rclone lsd apex:/schurerlab/pdavila/apps/
 -1 2022-06-23 10:36:21 -1 bin
 -1 2022-06-23 10:36:21 -1 ffmpeg
 -1 2022-06-23 10:36:21 -1 firefox
 -1 2022-06-23 10:36:21 -1 wget

You can exit your screen session using the ‘exit’ command.

Using FileZilla

FileZilla is a free, user friendly, open source, cross-platform FTP,
SFTP and FTPS application.

Download the FileZilla client here:
https://filezilla-project.org/download.php?show_all=1 and follow the
installation instructions for the appropriate platform
(http://wiki.filezilla-project.org/Client_Installation).

Launch FileZilla and open File : Site Manager.

Click the “New Site” button and name the entry. Pegasus example:

Host: pegasus.ccs.miami.edu | triton.ccs.miami.edu | apex.idsc.miami.edu (CES)
Protocol: SFTP
Logon Type: Normal
enter your username and password

Selecting Logon Type: Ask for password will prompt for a password
each connection.[image: FileZilla Site Manager]

Remeber Pegasus and Apex use your IDSC account for authentication. Triton uses your CaneID.

Click the “Connect” button. Once connected, drag and drop files or
directories between your local machine and the server.

Using the gateway server

To transfer large amounts of data from systems outside the University of
Miami, use the gateway server. This server supports SFTP file
transfers. Users *must be a member of a project* to request access
to the gateway server. E-mail hpc@ccs.miami.edu to request access.

SFTP

Host: xfer.ccs.miami.edu
protocol: SFTP
user: caneid
pw: [UM caneid passwd]
Folder: download/<projectname>

Open an SFTP session to the gateway server using your IDSC account
credentials: xfer.ccs.miami.edu

[localmachine: ~]$ sftp username@xfer.ccs.miami.edu
sftp> cd download
sftp> mkdir <project>
sftp> cd project
sftp> put newfile

IDSC Onboarding Training Videos

If you are new to the IDSC clusters, please view our Training videos for Triton & Pegasus. These videos will cover the basic topics you will need
for connecting to and utilizing Triton & Pegasus.

Playlist Link:
https://www.youtube.com/playlist?list=PLldDLMcIa33Z38fwC6e_7YSQZtwJZLSzF

IDSC ACS Policies

	Policies
	Accounts

	IDSC Links

	Supercomputers

	Allocations

	Software

	Support

	Terms and Conditions
	Secure Storage

IDSC ACS Policies

IDSC Advanced Computing Services resources are available to all University of Miami employees and students. Use of IDSC resources is governed by University of Miami Acceptable Use Policies [http://it.miami.edu/about-umit/policies-and-procedures/] in addition to IDSC ACS policies, terms, and conditions.

Accounts

	To qualify for an IDSC account, you must be affiliated with the University of Miami.

	All IDSC accounts must be linked with a valid corresponding University of Miami account.

	Suspended accounts cannot submit jobs to IDSC clusters.

	Suspended accounts will be disabled after 90 days.

	Disabled accounts cannot log into the Pegasus cluster.

	Disabled account data will be deleted after 30 days.

IDSC Links

	IDSC Account Registration Form [https://idsc.miami.edu/IDSC_Account_Registration]

	IDSC Project Request Form [https://idsc.miami.edu/project_request]

	IDSC Software Requests : e-mail IDSC

Supercomputers

	All users of IDSC supercomputers are required to have an IDSC account.

	All SSH sessions are closed automatically after 30 minutes of inactivity.

	No backups are performed on cluster file systems.

	IDSC does not alter user files.

	Jobs running on clusters may be terminated for:

	using excessive resources or exceeding 30 minutes of CPU time on login nodes

	failing to reserve appropriate LSF resources

	backgrounding LSF processes with the & operator

	running on inappropriate LSF queues

	running from data on /nethome

The IDSC account responsible for those jobs may be suspended.

	Users with disabled IDSC accounts must submit a request to hpc@ccs.miami.edu for temporary account reactivation.

Allocations

	Active cluster users are allocated a logical home directory area on the cluster, PEGASUS: /nethome/username, TRITON: /home/username , limited to 250GB.

	Active projects can be allocated scratch directories: PEGASUS: /scratch/projects/projectID, TRITON: /scratch/projectID, intended for compiles and run-time input & output files.

	Disk allocations are only for data currently being processed.

	Data for running jobs must be staged exclusively in the /scratch file system. IDSC accounts staging job data in the /nethome filesystem may be suspended.

	Both home and scratch are available on all nodes in their respective clusters.

	Accounts exceeding the 250GB home limit will be suspended. Once usage is under 250GB, the account will be enabled.

	Data on /scratch may be purged after 21 days if necessary to maintain adaquate space for all accounts.

	For both the above exceeded allocation scenarios, a member of IDSC will send a notification before this occurs. This will give you the opporutnity to move your data if needed.

Software

	Users are free to install software in their home directories on IDSC clusters. More information about installing software onto ACS systems on ReadTheDocs [https://acs-docs.readthedocs.io/] : https://acs-docs.readthedocs.io/

	Cluster software requests are reviewed quarterly. Global software packages are evaluated per request.

Support

Contact our IDSC cluster and system support team via email to IDSC team (hpc@ccs.miami.edu) for help with connecting, software, jobs, data transfers, and more. Please provide detailed descriptions, the paths to your job files and any outputs, the software modules you may have loaded, and your job ID when applicable.

Suggestions:

	computer and operating system you are using

	your CCS account ID and the cluster you are using

	complete path to your job script file, program, or job submission

	complete path to output files (if any)

	error message(s) received

	module(s) loaded ($ module list)

	whether this job ran previously and what has changed since it last worked

	steps you may have already taken to address your issues

IDSC ACS Terms and Conditions

Use of IDSC systems means that you agree to all University of Miami Acceptable Use Policies [http://it.miami.edu/about-umit/policies-and-procedures/]. In addition to these policies, IDSC adds the following:

	No PHI or PII may be stored on the systems

	IDSC is not responsible for any data loss or data compromise

	IDSC will make a best effort to recover lost data but assumes no responsibility for any data

	IDSC will gather aggregate usage and access statistics for research purposes

	IDSC will perform unscheduled audits to ensure compliance with IDSC and UM acceptable use policies

Secure Storage

All of your data is hosted in the NAP of the Americas Terremark facility in downtown Miami. The NAP is a Category 5 Hurricane proof facility that hosts all critical infrastructure for the University of Miami. Along with being a Category 5 Hurricane proof facility, the NAP is also guarded 24/7 with multi-layer security consistent with a secure facility.

Your data is encrypted at four levels using our vault secure data processing facility:

	Data at rest. At rest data is kept on encrypted partition which must be mounted by individual users requiring command line access

	Data in motion. All data in motion is encrypted using FIPS 140-2 compliant SSL. This encryption is called automatically by using https protocols.

	Application layer access. All applications must utilize multi-factor authentication (currently Yubikey hardware key) for access to data.

	PHI data. All PHI data must be handled by authorized IDSC personnel and is NOT directly available from your secure server. All uploads and downloads are handed by authorized IDSC personnel only.

	Deleted data. All deleted data is securely removed from the system.

Along with these security precautions, we also conduct regular security tests and audits in accordance with PCI and HIPAA standards. IDSC welcomes any external audits and will make every effort to comply with industry standards or we will reject the project.

Index

Testing CentOS 7 on Pegasus

On Feb 12th at 5pm Pegasus compute nodes in the parallel, general and bigmem queues will be updated to CentOS 7.

We encourage you to test your applications on CentOS 7 prior to the update.

On Pegasus, a queue named ‘centos7’ has been created. You may submit jobs to this queue for the purpose of testing and validation on CentOS 7 prior to the scheduled upgrade.

Important

As a courtesy to others, please do not run jobs for more than 24 hours or use more than 64 cores in the centos7 queue.

Important

The share-rpms65 module conflicts with CentOS 7. You must be sure to remove the share-rpms65 module from your .bashrc or .cshrc prior to login on the centos7 headnode if you are currently using this module.

To submit jobs to the centos7 queue you must first login to pegasus as usual:

% ssh ccsuserid@pegasus.ccs.miami.edu

Then connect to the new head node:

% ssh centos7test

Here, you can submit jobs to centos7 test queue:

-bash-4.2$ bsub -q centos7 -P myprojectname -Is /bin/bash

Please contact us at hpc@ccs.miami.edu to report any problems.

SVN for CCS

Subversion Server

User access to Subversion server is managed through CCS LDAP accounts
and local ACLs. Authorized users can access SVN repositories with their
CCS accounts.

command line access:
http://web.ccs.miami.edu/repos/REPOSITORYNAME

web access: http://web.ccs.miami.edu/websvn

Subversion Client

For Windows, we recommend TortoiseSVN [http://www.tortoisesvn.net].
This Subversion client seamlessly integrates into Windows Explorer. A
right-click provides with the most common Subversion commands.

For Mac, download the latest Subversion client from
collab.net [http://www.open.collab.net/downloads/community/].
Extract the SVN binary to /usr/local/bin. Consider
SvnX [http://code.google.com/p/svnx/], a good open source front-end
for Subversion. As with all Mac apps, download the dmg file, double
click the file if it does not auto mount, then drag the SvnX application
to your system’s Application directory. See this tutorial for help
configuring SvnX: Getting Started with
SvnX [http://www.switchingtomac.com/tutorials/get-started-with-subversion-using-svnx/].

Most Linux distributions already have the SVN client. If not, run
sudo yum install subversion - more information here: CentOS
Subversion HowTo [http://wiki.centos.org/HowTos/Subversion]. Note,
this may take a good ten minutes.

Basic Subversion commands

Include the -m flag and a message with SVN commits, adds, and
imports. For more information about Subversion commands, run
svn help at the command-line prompt.

	Command

	Description

	svn list repo_address

	List files in a repository.

	svn import /path/to/directory repo_address -m ‘tree description’

	Add and commit all content under directory to the specified repo, with
comments (-m flag). Run svn checkout after import to create working
copies on your machine.

	svn checkout repo_address

svn co repo_address

	Checkout a repository by creating a working copy (snapshot) on your
machine. A repository must be checked out to run the below commands.

	svn add filename_or_directory -m ‘description’

	Add a new file or the contents of a new directory to the current working
copy, with comments (-m flag). Commit or check-in after adding files to
update the repo.

	svn delete filename_or_directory

	Delete file or directory from the current working copy. Commit or
check-in after deleting files to update the repo.

	svn status optional filenames or directories

	Review all modified files, or specify multiple file or directory names.
Add the –verbose flag to see details.

	svn commit filename_or_directory -m ‘explanation’

svn ci filename_or_directory -m ‘explanation of changes’

	Commit or check-in changes to a specific file or all files in directory,
with comments (-m flag) Review local changes with svn status before
committing them.

	svn commit -m ‘explanation’

svn ci -m ‘explanation of changes’

	Commit or check-in all changes, with comments (-m flag) Review local
changes with svn status before committing them.

	svn revert optional filenames or directories

svn revert -R .

	Revert any un-committed changes to the most recent snapshot versions.
Revert all un-committed changes with -R . This does not delete files
that are not managed by SVN (status ?)

	svn update optional filenames or directories

svn up optional filenames or directories

	Update your working copies with versions from the repository, or specify
multiple file names. SVN will attempt to merge any changes.

	svn diff optional filenames or directories

svn diff revision1:revision2 optional filenames or directories

	Review differences between your current working copy and the snapshot,
or specify revision numbers. Optionally specify multiple file names.

Basic SVN Usage

Once your repository is available, use svn import to populate it
with content from a directory on your local machine. Remember to check
out the repository after, to create SVN-managed working copies on your
machine.

[username@pegasus test]$ svn import test http://web.ccs.miami.edu/repos/mydept/myrepo -m 'adding all content under test'
Adding test/file1.test
Adding test/file2.test
Adding test/file3.test
Committed revision 41.

To create a working copy (private snapshot) of all files in a repository
on your local computer (in a directory with the repository name) use
svn checkout. This initial copy is your snapshot. Subversion will
keep track of changes in your working copy, which are pending with
respect to the repository until committed with svn commit
(svn ci). It is good practice to review your local changes with
svn status before committing them.

[username@pegasus ~]$ svn checkout http://web.ccs.miami.edu/repos/mydept/myrepo
A myrepo/test/file1.test
A myrepo/test/file2.test
A myrepo/test/file3.test
Checked out revision 42.
[username@pegasus ~]$ cd myrepo/test
[username@pegasus test]$ ls
file1.test file2.test file3.test

After editing your working copy of repository files, commit (upload) all
or some changes to the Subversion server with svn commit (or
svn ci). Take the time to write a decent comment explaining your
changes.

[username@pegasus test]$ svn ci file3.test -m 'updated equation in line 19'
Sending file3.test
Transmitting file data .
Committed revision 43.

Add your own files or directories to your local working copy with
svn add. Run svn ci after adding, to commit the changes to the
repository. Take the time to write a decent comment explaining your
changes.

[username@pegasus test]$ svn add file4.test
A file4.test
[username@pegasus test]$ svn commit file4.test -m 'adding a new file'
Adding file4.test
Transmitting file data ..
Committed revision 44.

[usrname@pegasus test]$ svn add testtree
A testtree
A testtree/subfile1.test
A testtree/subfile2.test
[username@pegasus test]$ svn ci testtree -m 'committing additional testtree directory'
Adding testtree
Adding testtree/subfile1.test
Adding testtree/subfile2.test
Transmitting file data ..
Committed revision 45.

Delete files or directories from your local working copy with
svn delete. Run svn ci after deleting, to commit the changes to
the repository. Take the time to write a decent comment explaining your
changes.

[username@pegasus test]$ svn delete testtree/subfile2.test
D testtree/subfile2.test
[username@pegasus test]$ svn ci -m 'committing deletion of subfile2.test'
Deleting testtree/subfile2.test

Committed revision 46.

[username@pegasus test]$ svn delete testtree
D testtree/subfile1.test
D testtree
[username@pegasus test]$ svn ci -m 'committing deletion of directory testtree and contents'
Deleting testtree

Committed revision 47.

Review modifications made to your local working copy with
svn status. Use the --verbose flag to show details, including
revision and owner information. Specify files or directories with
optional arguments.

[username@pegasus test]$ svn status
? file4.test
A file3.test
M file1.test

In this example, file1.test has been modified (M),
file3.test has been added to the working copy (not the repo), and
file4.test has not been added to the working copy (?).
file2.test matches the repository version (all files are shown with
--verbose flag and no arguments):

[username@pegasus test]$ svn status --verbose
 47 47 username .
? file4.test
A file3.test
 47 47 username file2.test
M 47 47 username file1.test

Show verbose status for only file4.test and file1.test:

[username@pegasus test]$ svn status file1.test file4.test --verbose
M 47 47 username file1.test
? file34.test

Add file4.test to the local working copy, then commit the updates
and additions separately:

[username@pegasus test]$ svn add file4.test
A file4.test
[username@pegasus test]$ svn status
A file4.test
A file3.test
M file1.test
[username@pegasus test]$ svn ci file1.test -m 'updating file1.test'
Sending file1.test
Transmitting file data .
Committed revision 48.
[username@pegasus test]$ svn ci -m 'adding 2 test files'
Adding file3.test
Adding file4.test
Transmitting file data ..
Committed revision 49.

Revert any un-committed changes to your local working copy with
svn revert. This will return the specified files or directories in
the working copy to the checked-out snapshot. Revert all with -R .
(this will not delete any new files with ? status).

[username@pegasus test]$ svn status
? file4.test
M file2.test
M file3.test
M file1.test
[username@pegasus test]$ svn revert file1.test
Reverted 'file1.test'
[username@pegasus test]$ svn status
? file4.test
M file2.test
M file3.test
[username@pegasus test]$ svn revert -R .
Reverted 'file2.test'
Reverted 'file3.test'
[username@pegasus test]$ svn status
? file4.test

Update your local working copy to the current repository version with
svn update (svn up). SVN will attempt to merge any changes on
the server with committed changes to your local working copy.
Specify files with optional arguments.

[username@pegasus test]$ svn up file2.test
U file2.test
Updated to revision 50.
[username@pegasus test]$ svn up
U file1.test
U file3.test
U file4.test
Updated to revision 50.

Review differences between two versions with svn diff. Without
arguments, this shows the differences between your local working copies
and the snapshot (your most recent retrieval from the repository).
Specify revisions with -r rev1:rev2 and files or directories
with optional arguments. Revision order matters for svn diff -r
output.

In this example, file2.test starts empty. A line has been added to
the local working copy. The differences betwen the local working copy
and the snapshot are shown:

[username@pegasus test]$ svn diff file2.test
Index: file2.test
===
--- file2.test (revision 50)
+++ file2.test (working copy)
@@ -0,0 +1 @@
+username added this line to local working copy

The local file2.test is then committed to the repository, and
differences between revisions are shown. Note that the order of
revisions affects output format (not output content).

[username@pegasus test]$ svn ci file2.test -m 'updating repo'
Sending file2.test
Transmitting file data .
Committed revision 51.

[username@pegasus test]$ svn diff -r 50:51 file2.test
Index: file2.test
===
--- file2.test (revision 50)
+++ file2.test (revision 51)
@@ -0,0 +1 @@
+username added this line to local working copy

[username@pegasus test]$ svn diff -r 51:50 file2.test
Index: file2.test
===
--- file2.test (revision 51)
+++ file2.test (revision 50)
@@ -1 +0,0 @@
-username added this line to local working copy

Software Modules

Below is a list of the software on Triton accessible through LMOD (modules) as of 2021/01/13 5:00pm.

The “module avail command” reports only the modules that are available with with the current compiler. The “module spider” command lists all available modules, regardless of which compiler is loaded.

The Anaconda and IBM Watson Machine Learning (WML) modules provide additional software. More information on using modules on Triton is available on the modules documentation page, link below.

https://github.com/um-acs/acs_docs/blob/master/docs/triton/1-env/3-modules.rst

	Software

	Description

	R/3.6.1

	

	StdEnv

	Loads standard environment modules

	anaconda2/2019.07

	

	anaconda3/biohpc

	

	anaconda3/2019.07

	

	anaconda3/2019.10

	

	aspect/2.1

	

	aspect/2.2.0

	

	at/12.0

	GNU/Linux toolchain update, IBM AT 12.0 gcc 8.3.1

	boost/7.4.0

	

	cdo/1.9.7.1

	

	cdo/1.9.8

	CDO tools and libraries compiled with hdf5 1.8.16 and netcdf C 4.7.4

	cellranger/3.0.2

	10x Genomics Inc software distribution

	cellranger-atac/3.0.2

	

	cellranger-dna/3.0.2

	

	cp2k/6.1

	Quantum chemistry and solid state physics software package

	cuda/10.1

	

	cuda/10.2

	

	cuda/10.2.89

	

	cuda/11.1.0

	

	fftw/3.3.8

	FFTW libraries for Power9

	gcc/4.8.5

	The GNU Compiler Collection

	gcc/7.4.0

	

	gcc/8.4.0

	

	gcc/10.2.0

	

	gromacs/2020.2

	

	hdf5/1.8.16

	

	hdf5/1.10.5

	

	hdf5/1.10.6

	

	hdf5/1.10.7

	HDF5 libraries, serial

	hwloc/1.11.11

	MPI implementation for GCC 7.4.0

	java/8.0

	

	java/8.0-6.5

	Java(TM) SE Runtime Environment (build 8.0.5.37)

	lammps/2019.08

	Molecular dynamics code with a focus on materials modeling.

	libiconv/1.16

	

	libpciaccess/0.13.5

	

	libxml2/2.9.9

	

	nco/4.8.1

	

	nco/4.9.3

	NCO tools and libraries compiled with netcdf C 4.7.4

	netcdf/4.7.1

	netcdf4 C and F libraries compiled with hdf5 1.10.5

	netcdfc/4.7.4

	netcdf C libraries compiled with hdf5 1.8.16

	netcdff/4.5.3

	netcdf F libraries compiled with hdf5 1.8.16 & netcdf C 4.7.4

	netlib-scalapack/2.0.2

	

	numactl/2.0.12

	

	openBLAS/0.3.7

	openBLAS libraries for Power9

	openblas/0.3.7

	

	openfoam/2006

	

	openmpi/3.1.4

	

	openmpi/3.1.6

	MPI implementation for GCC 7.4.0

	py-torch/1.7.0

	

	python/3.7.3

	

	python/3.8.6

	

	smpi/10.02

	MPI implementation for IBM AT 12.0

	vmd/1.9.4

	Molecular visualization program

	wml/1.6.1

	IBM Watson Machine Learning (WML) 1.6.1

	wml/1.6.2

	

	wml/1.7.0

	

	wml_anaconda3/2019.10

	Anaconda3 Configured for Installing WML

	xl/16.1.1.4

	IBM C, C++, and Fortran compilers, with Cuda 10.1 support

	xz/5.2.4

	

	zlib/1.2.11

	

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/putty_2.png
#R PuTTY Configuration

Category:

& Teminal
Keyboard
Bel
Features.
£ Window

e

‘Optons contrling SSH X1 forwarding

X1 forwarding
Enable X11 forwarding

_static/ajax-loader.gif

_images/fz_sm1.png

_images/putty_1.png
#R PuTTY Configuration

Category:

- Session
Logaing
& Teminal

Keyboard

Tenet

SSH
Seral

Basic optons for your PuTTY session

‘Specty the destnation you want to connct to
Host Name for IP address) Pot
pegasus cos miami edu 2
Connection type:

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Advanced Computing Guides

 		
 Triton Cluster

 		
 Triton Environment

 		
 Triton Introduction

 		
 Connecting to Triton

 		
 Software Environment Modules

 		
 Triton Quickstart Guide

 		
 Triton Software Suites

 		
 Anaconda

 		
 IBM WML CE (Deep Learning)

 		
 JupyterHub

 		
 Installing R via Anaconda

 		
 Triton LSF Job Scheduling

 		
 Job Scheduler – LSF

 		
 Job Queues

 		
 LSF Commands

 		
 LSF Job Scripts

 		
 Interactive Jobs

 		
 Pegasus Cluster

 		
 Pegasus Environment

 		
 Pegasus Introduction

 		
 Connecting

 		
 Pegasus Projects & Resources

 		
 Pegasus Job Scheduling

 		
 Job Scheduler – LSF

 		
 Job Queues

 		
 LSF Commands

 		
 LSF Job Scripts

 		
 Interactive Jobs

 		
 Pegasus Software

 		
 Software Modules

 		
 Application Development

 		
 Parallel Computing

 		
 Installing Software on a Cluster

 		
 Allinea

 		
 Amazon Web Services CLI

 		
 MATLAB

 		
 Perl

 		
 Python

 		
 Python Virtual Environments

 		
 R

 		
 RStudio

 		
 SAS

 		
 Using R through Anaconda

 		
 Jupyterhub

 		
 SimVascular

 		
 Pegasus FAQ

 		
 Pegasus Projects

 		
 Pegasus Software

 		
 Pegasus Job Scheduling

 		
 Linux on Clusters

 		
 Introduction to Linux on Pegasus

 		
 Navigating the Linux Shell

 		
 Interacting with Files on Pegasus

 		
 File Permissions in Linux

 		
 Access Control Lists – ACL

 		
 Linux FAQs

 		
 ACS Services

 		
 Access (SSH, x11, VPN)

 		
 Windows

 		
 Mac and Linux

 		
 Forwarding the display with x11

 		
 Connecting to IDSC Systems from offsite

 		
 Storage

 		
 GPFS storage

 		
 CES storage

 		
 File Transfers

 		
 Using command line utilities

 		
 Using FileZilla

 		
 Using the gateway server

 		
 IDSC Onboarding Training Videos

 		
 IDSC ACS Policies

 		
 Policies

 		
 Accounts

 		
 IDSC Links

 		
 Supercomputers

 		
 Allocations

 		
 Software

 		
 Support

 		
 Terms and Conditions

 		
 Secure Storage

_images/MatlabParallel2.png
Discover Clusters...
Search for MATLA Distributed Computing Server
clusters on your network

Import
Import cluster profiles from file

Custom
Build a custom cluster profile

B ¥ Q

tion Results |

Nurnber of worl
to start on your
machine
Nunborkers

Folder where
stores job data
JobStoragel o

FILES AND FOL|

is The local cluster
HWORKS CLUSTER

Use the cores on your machine

MATLAB Job Scheduler (MJs)
Use a MATLAB Distributed Com puting Server cluster running MJS

3RD P
Pos pro
Torque
Generic
Lse

HRC server

Automatically

Trie (defaur)

_images/MatlabParallel3.png
[\ Cluster Profile Manager

Description of this cluster
Description

Folder where cluster stores job data
JobStorageLocation

Nurnber of warkers available to cluster
Nunborkers

Root folder of MATLAB installation for
workers
ClusterkatlabRoot

Agditional command line arguments
for job subrmission

Pegasus LSF cluster

Use default

Default is current working folder

32

Default is inf

Use default

Default is <matlabroot>

-P PROJECT D -0 general

_static/up.png

_images/MatlabParallel1.png
[X] MATLAB R2014b.

sect cosnenin__#|
. 98 O3 Cgrmaries

New New Open || Campare
s v - S e -
s b 4

VARIABLE | CODE | SIMULINK | ENVIRGNMENT | ResouRces

< % (5§ 0/ » nethome » nperlin » Matiab » g @ eerences

New to MATLAB? See resources for Geiting Started (5 setparn
Layour
> Z

S

i Defaut Cluster

Current o,

Discaver Clusters.
Parallel Preferences

Manage Cluster Profiles.

Workspace

Monitor Jobs

